【題目】已知函數f(x)=
(a、b、c∈Z)是奇函數.
(1)若f(1)=1,f(2)﹣4>0,求f(x);
(2)若b=1,且f(x)>1對任意的x∈(1,+∞)都成立,求a的最小值.
【答案】
(1)解:∵f(x)是奇函數,∴f(x)+f(﹣x)=0,
即
=0,∴c=0,
∴f(x)=
,又f(1)=
=1,∴b=a﹣2,
f(2)﹣4=
﹣4>0,
∴
﹣4=
>0,
∴2<a<
,∵a∈Z,∴a=3,b=1,
∴f(x)= ![]()
(2)解:b=1時,由(1)得:f(x)=
,
f(x)>1恒成立即
>1對任意x∈(1,+∞)恒成立,
即a>
=
+
對任意x∈(1,+∞)恒成立,
令t=
,∴t∈(0,1),
于是
+
=2t2+t∈(0,3),
∴a≥3,a的最小值是3
【解析】(1)根據函數是奇函數求出c=0,根據f(1),f(2)的值求出a,b從而求出f(x)即可;(2)問題轉化為a>
=
+
對任意x∈(1,+∞)恒成立,令t=
,從而求出a的最小值.
【考點精析】認真審題,首先需要了解函數奇偶性的性質(在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇),還要掌握函數的最大(小)值與導數(求函數
在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值)的相關知識才是答題的關鍵.
科目:高中數學 來源: 題型:
【題目】已知直線l1:x+my+1=0和l2:(m﹣3)x﹣2y+(13﹣7m)=0.
(1)若l1⊥l2 , 求實數m的值;
(2)若l1∥l2 , 求l1與l2之間的距離d.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(6,2),B(3,2),動點M滿足|MA|=2|MB|.
(1)求點M的軌跡方程;
(2)設M的軌跡與y軸的交點為P,過P作斜率為k的直線l與M的軌跡交于另一點Q,若C(1,2k+2),求△CPQ面積的最大值,并求出此時直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某農科所對冬季晝夜溫差大小與某反季節大豆新品種發芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發芽數,得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發芽數 | 23 | 25 | 30 | 26 | 16 |
該農科所確定的研究方案是:先從這五組數據中選取2組,用剩下的3組數據求線性回歸方程,再對被選取的2組數據進行檢驗.
(1)求選取的2組數據恰好是不相鄰2天數據的概率;
(2)若選取的是12月1日與12月5日的兩組數據,請根據12月2日至12月4日的數據,求出y關于x的線性回歸方程
;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在梯形ABCD中,BC∥AD,AB⊥BC,AB=BC=1,PA=AD=2,PA⊥平面ABCD,E為PD中點. ![]()
(1)求證:CE∥平面PAB;
(2)求直線CE與平面PAD所成角的大小.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com