【題目】已知函數(shù)![]()
(1)求函數(shù)
的極值;
(2)求證:
;
(3)
,若對于任意的
,恒有
成立,求
的取值范圍.
【答案】(1)見解析; (2)
.
【解析】試題分析:(1)由題意,得
,得出函數(shù)的單調(diào)性,即可求得函數(shù)的極值;
(2)由(1)知
的極小值即為最小值,推得
,進(jìn)而可證得結(jié)論;
(3)由題意
的解析式,求得
,令
,求得
,利用
得存在
,使
,且
在
上遞減,
在
上遞增,求得函數(shù)的
的最小值,再轉(zhuǎn)化為函數(shù)
,利用導(dǎo)數(shù)
的單調(diào)性,即可求解實(shí)數(shù)
的取值范圍.
試題解析:
(1)由
可得,函數(shù)
在
單減,在
單增,所以函數(shù)
的極值在
取得,為極小值
;
(2)根據(jù)(1)知
的極小值即為最小值,即
可推得
當(dāng)且僅當(dāng)
取等,所以
,
所以有
![]()
(3)
∴
令
,則
,∴
在
上遞增
∵
,當(dāng)
時,
∴存在
,使
,且
在
上遞減,
在
上遞增
∵
∴
,即
∵對于任意的
,恒有
成立
∴
∴
∴
∴
∴
,又
, ![]()
∵
∴
,令
,
,顯然
在
單增,而
,
,
∴
∴
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新冠肺炎疫情期間,為了減少外出聚集,“線上買菜”受追捧.某電商平臺在
地區(qū)隨機(jī)抽取了
位居民進(jìn)行調(diào)研,獲得了他們每個人近七天“線上買菜”消費(fèi)總金額(單位:元),整理得到如圖所示頻率分布直方圖.
![]()
(1)求
的值;
(2)從“線上買菜”消費(fèi)總金額不低于
元的被調(diào)研居民中,隨機(jī)抽取
位給予獎品,求這
位“線上買菜”消費(fèi)總金額均低于
元的概率;
(3)若
地區(qū)有
萬居民,該平臺為了促進(jìn)消費(fèi),擬對消費(fèi)總金額不到平均水平一半的居民投放每人
元的電子補(bǔ)貼.假設(shè)每組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,試根據(jù)上述頻率分布直方圖,估計(jì)該平臺在
地區(qū)擬投放的電子補(bǔ)貼總金額.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三角形內(nèi),我們將三條邊的中線的交點(diǎn)稱為三角形的重心,且重心到任一頂點(diǎn)的距離是到對邊中點(diǎn)距離的兩倍類比上述結(jié)論:在三棱錐中,我們將頂點(diǎn)與對面重心的連線段稱為三棱錐的“中線”,將三棱錐四條中線的交點(diǎn)稱為它的“重心”,則棱錐重心到頂點(diǎn)的距離是到對面重心距離的______倍![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列條件解三角形,有兩解的有( )
A.已知a
,b=2,B=45°B.已知a=2,b
,A=45°
C.已知b=3,c
,C=60°D.已知a=2
,c=4,A=45°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面四邊形
中,
,
,將
沿
折起,使得平面
平面
,如圖.
![]()
(1)求證:
;
(2)若
為
中點(diǎn),求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下命題為假命題的是( )
A. “若m>0,則方程x2+x-m=0有實(shí)數(shù)根”的逆命題
B. “面積相等的三角形全等”的否命題
C. “若xy=1,則x,y互為倒數(shù)”的逆命題
D. “若A∪B=B,則AB”的逆否命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
的焦點(diǎn)曲線
的一個焦點(diǎn),
為坐標(biāo)原點(diǎn),點(diǎn)
為拋物線
上任意一點(diǎn),過點(diǎn)
作
軸的平行線交拋物線的準(zhǔn)線于
,直線
交拋物線于點(diǎn)
.
(Ⅰ)求拋物線
的方程;
(Ⅱ)求證:直線
過定點(diǎn)
,并求出此定點(diǎn)的坐標(biāo).
【答案】(I)
;(II)證明見解析.
【解析】試題分析:(Ⅰ)將曲線
化為標(biāo)準(zhǔn)方程,可求得
的焦點(diǎn)坐標(biāo)分別為
,可得
,所以
,即拋物線的方程為
;(Ⅱ)結(jié)合(Ⅰ),可設(shè)
,得
,從而直線
的方程為
,聯(lián)立直線與拋物線方程得
,解得
,直線
的方程為
,整理得
的方程為
,此時直線恒過定點(diǎn)
.
試題解析:(Ⅰ)由曲線
,化為標(biāo)準(zhǔn)方程可得
, 所以曲線
是焦點(diǎn)在
軸上的雙曲線,其中
,故
,
的焦點(diǎn)坐標(biāo)分別為
,因?yàn)閽佄锞的焦點(diǎn)坐標(biāo)為
,由題意知
,所以
,即拋物線的方程為
.
(Ⅱ)由(Ⅰ)知拋物線
的準(zhǔn)線方程為
,設(shè)
,顯然
.故
,從而直線
的方程為
,聯(lián)立直線與拋物線方程得
,解得![]()
①當(dāng)
,即
時,直線
的方程為
,
②當(dāng)
,即
時,直線
的方程為
,整理得
的方程為
,此時直線恒過定點(diǎn)
,
也在直線
的方程為
上,故直線
的方程恒過定點(diǎn)
.
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù)
, ![]()
(Ⅰ)當(dāng)
時,求函數(shù)
的單調(diào)遞減區(qū)間;
(Ⅱ)若
時,關(guān)于
的不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(Ⅲ)若數(shù)列
滿足
,
,記
的前
項(xiàng)和為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在平面六邊形
中,四邊形
是矩形,且
,
,
,點(diǎn)
,
分別是
,
的中點(diǎn),分別沿直線
,
將
,
翻折成如圖(2)的空間幾何體
.
(Ⅰ)利用下列結(jié)論1或結(jié)論2,證明:
、
、
、
四點(diǎn)共面;
結(jié)論1:過空間一點(diǎn)作已知直線的垂面,有且僅有一個.
結(jié)論2:過平面內(nèi)一條直線作該平面的垂面,有且僅有一個.
(Ⅱ)若二面角
和二面角
都是
,求三棱錐
的體積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖4所示,其中成績分組區(qū)間是:
,
,
,
,
.
![]()
(1)求圖中
的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語文成績的平均分;
(3)若這100名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)
與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)
之比如下表所示,求數(shù)學(xué)成績在
之外的人數(shù).
分?jǐn)?shù)段 |
|
|
|
|
X:y | 1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com