【題目】如圖1,2,在Rt△ABC中,AB=BC=4,點E在線段AB上,過點E作交AC于點F,將△AEF沿EF折起到△PEF的位置(點A與P重合),使得∠PEB=60°. ![]()
(1)求證:EF⊥PB;
(2)試問:當點E在何處時,四棱錐P﹣EFCB的側面的面積最大?并求此時四棱錐P﹣EFCB的體積及直線PC與平面EFCB所成角的正切值.
【答案】
(1)證明:∵EF∥BC且BC⊥AB,
∴EF⊥AB,即EF⊥BE,EF⊥PE.又BE∩PE=E,
∴EF⊥平面PBE,又PB平面PBE,
∴EF⊥PB
(2)解:設BE=x,PE=y,則x+y=4.
∴
.
當且僅當x=y=2時,S△PEB的面積最大,此時,BE=PE=2.
由(1)知EF⊥平面PBE,
∵EF平面EFCB,∴平面EFCB⊥平面PBE.
在平面PBE中,作PO⊥BE于O,則PO⊥平面EFCB.
即PO為四棱錐P﹣EFCB的高.
又
.
∴ ![]()
∵
,
∴BO=1,在Rt△OBC中,
.
∵PO⊥平面EFCB,∴∠PCO就是PC與平面EFCB所成角.
∴
,
故直線PC與平面EFCB所成角的正切值為 ![]()
![]()
【解析】(1)推導出EF⊥AB,EF⊥BE,EF⊥PE,由此能證明EF⊥PB. (2)設BE=x,PE=y,則x+y=4,當且僅當x=y=2時,S△PEB的面積最大,此時,BE=PE=2.EF⊥平面PBE,從而平面EFCB⊥平面PBE.作PO⊥BE于O,則PO為四棱錐P﹣EFCB的高,∠PCO就是PC與平面EFCB所成角.由此能求出結果.
科目:高中數學 來源: 題型:
【題目】甲乙兩人進行乒乓球決賽,比賽采取七局四勝制.現在的情形是甲勝3局,乙勝2局.若兩人勝每局的概率相同,則甲獲得冠軍的概率為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某家具廠有方木料
,五合板
,準備加工成書桌和書櫥出售.已知生產每張書桌需要方木料
、五合板
;生產每個書櫥需要方木枓
、五合板
.出售一張書桌可獲利潤
元,出售一個書櫥可獲利潤
元,怎樣安排生產可使所得利潤最大?最大利潤為多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分別是PC,PD,BC的中點. ![]()
(1)求證:平面PAB∥平面EFG;
(2)證明:平面EFG⊥平面PAD;
(3)在線段PB上確定一點Q,使PC⊥平面ADQ,并給出證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數:f(x)=x2+bx+c,其中:0≤b≤4,0≤c≤4,記函數f(x)滿足條件:
的事件為A,則事件A發生的概率為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com