【題目】已知數列{an}滿足
,且
.
(1)求證:數列
是等差數列,并求出數列
的通項公式;
(2)求數列
的前
項和
.
【答案】(1) an=(2n-1)2n-1;(2) Sn=(2n-3)2n+3.
【解析】
(1)根據等差數列的定義,判斷數列
是等差數列,并寫出它的通項公式以及{an}的通項公式;
(2)根據數列{an}的前n項和定義,利用錯位相減法求出Sn;
(1)證明:因為an=2an-1+2n,所以
=
=
+1,
即
-
=1,所以數列
是等差數列,且公差d=1,其首項
=
,所以
=
+(n-1)×1=n-
,解得an=
×2n=(2n-1)2n-1.
(2)Sn=1×20+3×21+5×22+…+(2n-1)×2n-1,①
2Sn=1×21+3×22+5×23+…+(2n-3)×2n-1+(2n-1)×2n,②
①-②,得-Sn=1×20+2×21+2×22+…+2×2n-1-(2n-1)2n
=1+
-(2n-1)2n=(3-2n)2n-3.
所以Sn=(2n-3)2n+3.
科目:高中數學 來源: 題型:
【題目】(請寫出式子在寫計算結果)有4個不同的小球,4個不同的盒子,現在要把球全部放入盒內:
(1)共有多少種方法?
(2)若每個盒子不空,共有多少種不同的方法?
(3)恰有一個盒子不放球,共有多少種放法?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】直線l的極坐標方程為θ=α(ρ∈R,ρ≠0),其中α∈[0,π),曲線C1的參數方程為
(t為參數),圓C2的普通方程為x2+y2+2
x=0.
(1)求C1,C2的極坐標方程;
(2)若l與C1交于點A,l與C2交于點B,當|AB|=2時,求△ABC2的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了紀念“一帶一路”倡議提出五周年,某城市舉辦了一場知識競賽,為了了解市民對“一帶一路”知識的掌握情況,從回收的有效答卷中按青年組和老年組各隨機抽取了40份答卷,發現成績都在
內,現將成績按區間
,
,
,
,
進行分組,繪制成如下的頻率分布直方圖.
![]()
青年組
![]()
中老年組
(1)利用直方圖估計青年組的中位數和老年組的平均數;
(2)從青年組
,
的分數段中,按分層抽樣的方法隨機抽取5份答卷,再從中選出3份答卷對應的市民參加政府組織的座談會,求選出的3位市民中有2位來自
分數段的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線
:
的焦點為
,點
為
上異于頂點的任意一點,過
的直線
交
于另一點
,交
軸正半軸于點
,且有
,當點
的橫坐標為3時,
為正三角形.
(1)求
的方程;
(2)若直線
,且
和
相切于點
,試問直線
是否過定點,若過定點,求出定點坐標;若不過定點,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com