【題目】已知拋物線
:
的焦點為
,點
為
上異于頂點的任意一點,過
的直線
交
于另一點
,交
軸正半軸于點
,且有
,當(dāng)點
的橫坐標(biāo)為3時,
為正三角形.
(1)求
的方程;
(2)若直線
,且
和
相切于點
,試問直線
是否過定點,若過定點,求出定點坐標(biāo);若不過定點,說明理由.
【答案】(1)
(2) 直線
過定點
.
【解析】
(1)設(shè)
,拋物線的焦點為
,由
,可得
,從而
,再由
點橫坐標(biāo)與
中點橫坐標(biāo)相同可求得
.
(2)設(shè)
,可得
,由
,可設(shè)直線
的方程為
,由它與拋物線相切可求得
,也即得出
點坐標(biāo),求出直線
方程,觀察得其過定點.注意分類,即按直線
斜率是否存在分類討論.
(1)拋物線的焦點
,設(shè)
,則
的中點坐標(biāo)為
,
∵
,∴
,解得
,或
(舍),
∵
,∴
,解得
,
∴拋物線方程為
.
(2)由(1)知,
,設(shè)
,
,
∵
,則
,由
得
,即
,
∴直線
的斜率
,∵
,故設(shè)直線
的方程為
,
聯(lián)立方程組
,得
,
∵直線
與拋物線相切,∴
,
,
設(shè)
,則
,
,
當(dāng)
時,
,直線
的方程為
,
∵
,∴直線
的方程為
,∴直線
過定點
,
當(dāng)
時,直線
方程為
,經(jīng)過定點
,
綜上,直線
過定點
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)曲線
(a為正常數(shù))與
在x軸上方僅有一個公共點P.
(1)求實數(shù)m的取值范圍(用a表示);
(2)O為原點,若
與x軸的負半軸交于點A,當(dāng)
時,試求△OAP的面積的最大值(用a表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究公司為了調(diào)查公眾對某事件的關(guān)注程度,在某年的連續(xù)6個月內(nèi),月份
和關(guān)注人數(shù)
(單位:百)(
)數(shù)據(jù)做了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
![]()
|
|
|
17.5 | 35 | 36.5 |
(1)由散點圖看出,可用線性回歸模型擬合y與x的關(guān)系,請用相關(guān)系數(shù)加以說明,并建立y關(guān)于x的回歸方程;
(2)經(jīng)統(tǒng)計,調(diào)查材料費用v(單位:百元)與調(diào)查人數(shù)滿足函數(shù)關(guān)系
,求材料費用的最小值,并預(yù)測此時的調(diào)查人數(shù);
(3)現(xiàn)從這6個月中,隨機抽取3個月份,求關(guān)注人數(shù)不低于1600人的月份個數(shù)
分布列與數(shù)學(xué)期望.
參考公式:相關(guān)系數(shù)
,若
,則y與x的線性相關(guān)程度相當(dāng)高,可用線性回歸模型擬合y與x的關(guān)系.回歸方程
中斜率與截距的最小二乘估計公式分別為
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足
,且
.
(1)求證:數(shù)列
是等差數(shù)列,并求出數(shù)列
的通項公式;
(2)求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與地面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑,首屆中國國際進口博覽會的某展館棚頂一角的鋼結(jié)構(gòu)可以抽象為空間圖形陽馬,如圖所示,在陽馬
中,
底面
.
(1)已知
,斜梁
與底面
所成角為
,求立柱
的長;(精確到
)
(2)求證:四面體
為鱉臑.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△
的三個內(nèi)角
、
、
所對應(yīng)的邊分別為
、
、
,復(fù)數(shù)
,
,(其中
是虛數(shù)單位),且
.
(1)求證:
,并求邊長
的值;
(2)判斷△
的形狀,并求當(dāng)
時,角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
的前
項和為
,且
,
.
(1)若數(shù)列
是等差數(shù)列,且
,求實數(shù)
的值;
(2)若數(shù)列
滿足
(
),且
,求證:
是等差數(shù)列;
(3)設(shè)數(shù)列
是等比數(shù)列,試探究當(dāng)正實數(shù)
滿足什么條件時,數(shù)列
具有如下性質(zhì)
:對于任意的
(
),都存在
,使得
,寫出你的探究過程,并求出滿足條件的正實數(shù)
的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,在
處的切線方程為
.
(1)求
,
;
(2)若
,證明:
.
【答案】(1)
,
;(2)見解析
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于
的方程組,解出即可;
(2)由(1)可知
,
,
由
,可得
,令
, 利用導(dǎo)數(shù)研究其單調(diào)性可得
,
從而證明
.
試題解析:((1)由題意
,所以
,
又
,所以
,
若
,則
,與
矛盾,故
,
.
(2)由(1)可知
,
,
由
,可得
,
令
,
,
令![]()
當(dāng)
時,
,
單調(diào)遞減,且
;
當(dāng)
時,
,
單調(diào)遞增;且
,
所以
在
上當(dāng)單調(diào)遞減,在
上單調(diào)遞增,且
,
故
,
故
.
【點睛】本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導(dǎo)數(shù)證明不等式的方法,解題時要認真審題,注意導(dǎo)數(shù)性質(zhì)的合理運用.
【題型】解答題
【結(jié)束】
22
【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
,
為參數(shù)),以坐標(biāo)原點
為極點,
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
,若直線
與曲線
相切;
(1)求曲線
的極坐標(biāo)方程;
(2)在曲線
上取兩點
,
與原點
構(gòu)成
,且滿足
,求面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位計劃在一水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量
(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和,單位:億立方米)都在40以上,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的年入流量相互獨立.
(1)求未來3年中,設(shè)
表示流量超過120的年數(shù),求
的分布列及期望;
(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量
限制,并有如下關(guān)系:
年入流量 |
|
|
|
發(fā)電機最多可運行臺數(shù) | 1 | 2 | 3 |
若某臺發(fā)電機運行,則該臺年利潤為5000萬元,若某臺發(fā)電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達到最大,應(yīng)安裝發(fā)電機多少臺?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com