【題目】某品牌經銷商在一廣場隨機采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調查結果如下:
微信控 | 非微信控 | 合計 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(1)根據以上數據,能否有95%的把握認為“微信控”與“性別”有關?
(2)現從調查的女性用戶中按分層抽樣的方法選出5人,再隨機抽取3人贈送禮品,記這3人中“微信控”的人數為
,試求
的分布列和數學期望.
參考公式:
,其中
.
參考數據:
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
科目:高中數學 來源: 題型:
【題目】某中學團委組織了“紀念抗日戰爭勝利73周年”的知識競賽,從參加競賽的學生中抽出60名學生,將其成績(均為整數)分成六段
,
,…,
后,畫出如圖所示的部分頻率分布直方圖.觀察圖形給出的信息,回答下列問題:
![]()
(1)求第四組的頻率,并補全這個頻率分布直方圖;
(2)估計這次競賽的及格率(60分及以上為及格)和平均分(同一組中的數據用該組區間的中點值代表)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
是定義在
上的偶函數,且當
時,
.現已畫出函數
在
軸左側的圖象,如圖所示,并根據圖象:
![]()
(1)直接寫出函數
,
的增區間;
(2)寫出函數
,
的解析式;
(3)若函數
,
,求函數
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
函數
是定義在
上的奇函數,且
。
(1)求實數a,b,并確定函數
的解析式;
(2)判斷
在(-1,1)上的單調性,并用定義證明你的結論;
(3)寫出
的單調減區間,并判斷
有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線
的焦點為
.
(1)若拋物線
的焦點到準線的距離為4,直線
,求直線
截拋物線
所得的弦長;
(2)過點
的直線交拋物線
于
兩點,過點
作拋物線的切線,兩切線相交于點
,若
分別表示直線
與直線
的斜率,且
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某民營企業生產
兩種產品,根據市場調查與預測,
產品的利潤與投資成正比,其關系如圖甲,
產品的利潤與投資的算術平方根成正比,其關系如圖乙(注:利潤與投資單位:萬元).
![]()
(1)分別將
兩種產品的利潤表示為投資
(萬元)的函數關系式;
(2)該企業已籌集到10萬元資金,并全部投入
兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業獲得最大利潤,其最大利潤為多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,曲線
與正方形
:
的邊界相切.
![]()
(1)求
的值;
(2)設直線
交曲線
于
,交
于
,是否存在這樣的曲線
,使得
,
,
成等差數列?若存在,求出實數
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,曲線
的參數方程為
(
為參數),以坐標原點為極點,
軸為極軸建立極坐標系,曲線
的極坐標為
.
(1)求曲線
的普通方程和曲線
的直角坐標方程;
(2)若曲線
和曲線
有三個公共點,求以這三個公共點為頂點的三角形的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com