【題目】如圖,已知
與圓
相切于點(diǎn)
,經(jīng)過點(diǎn)
的割線
交圓
于點(diǎn)
,
的平分線分別交
于點(diǎn)
.
![]()
(1)證明:
;
(2)若
,求
的值.
【答案】(1)證明見解析;(2)![]()
【解析】
試題分析:(1)要證兩角相等,與已知條件“
是角平分線”聯(lián)系,這兩個(gè)分別都可以作為一個(gè)三角形的外角,∠ADE=∠BAP+∠APD,∠AED=∠C+∠CPE,而由角平分線有,∠APD=∠CPE,由切線的性質(zhì)有∠BAP=∠C,因此結(jié)論得這兩點(diǎn);(2)由切線性質(zhì)可得APC∽BPA,這樣會(huì)出現(xiàn)線段的比值,再由
及(1)的證明知
中,
,從而求得
.
試題解析:(1)∵PA是切線,AB是弦,∴∠BAP=∠C
又∵∠APD=∠CPE,∴∠BAP+∠APD=∠C+∠CPE.
∵∠ADE=∠BAP+∠APD,∠AED=∠C+∠CPE.
∴∠ADE=∠AED
(2)由(1)知∠BAP=∠C,又∠APC=∠BPA,∴APC∽BPA,
,
∵AC=AP, ∠BAP=∠C=∠APC,
由三角形的內(nèi)角和定理知:∠C+∠APC+∠PAC=180,
∵BC是圓O的直徑,∴∠BAC=90,∴∠C+∠APC+∠BAP=90,∴∠C=∠APC=∠BAP=30,
在RtABC中,
,∴![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱
中,
平面
,
,
,
,
,
分別為
、
的中點(diǎn).
![]()
(1)求證:平面
平面
;
(2)求證:
平面
,并求
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)字序列:3,-2,-4,0,5,13,6,-32,-18,9,-20.下面是從該序列中搜索所有負(fù)數(shù)的一個(gè)算法,請(qǐng)補(bǔ)全步驟:
S1 輸入實(shí)數(shù)a;
S2 _____;
S3 輸出a,轉(zhuǎn)S1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線
和圓
.有以下幾個(gè)結(jié)論:
①直線
的傾斜角不是鈍角;
②直線
必過第一、三、四象限;
③直線
能將圓
分割成弧長(zhǎng)的比值為
的兩段圓弧;
④直線
與圓
相交的最大弦長(zhǎng)為
.
其中正確的是________________.(寫出所有正確說(shuō)法的番號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某村計(jì)劃建造一個(gè)室內(nèi)面積為800
的矩形蔬菜溫室.在溫室內(nèi),沿左右兩側(cè)與后側(cè)內(nèi)墻各保留1
寬的通道,沿前側(cè)內(nèi)墻保留3
寬的空地.當(dāng)矩形溫室的邊長(zhǎng)各為多少時(shí)?蔬菜的種植面積最大,最大種植面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某學(xué)校的800名男生中隨機(jī)抽取50名測(cè)量身高,被測(cè)學(xué)生身高全部介于155
和195
之間,將測(cè)量結(jié)果按如下方式分成八組:第一組
,第二組
,…,第八組
,下圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為4人.
![]()
(1)求第七組的頻率;
(2)估計(jì)該校的800名男生的身高的眾數(shù)以及身高在180
以上(含180
)的人數(shù);
(3)若從身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩名男生,記他們的身高分別為
,事件
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下四個(gè)命題中:
①在回歸分析中, 可用相關(guān)指數(shù)
的值判斷的擬合效果,
越大,模型的擬合效果越好;
②兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對(duì)值越接近
;
③若數(shù)據(jù)
的方差為
,則
的方差為
;
④對(duì)分類變量
與
的隨機(jī)變量
的觀測(cè)值
來(lái)說(shuō),
越小,判斷“
與
有關(guān)系”的把握程度越大.
其中真命題的個(gè)數(shù)為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
,函數(shù)
,
.
(1)指出
的單調(diào)性(不要求證明);
(2)若有
求
的值;
(3)若
,求使不等式
恒成立的
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率為
,以橢圓的四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形的面積為
.
(1)求橢圓的方程;
(2)斜率為
的直線
過橢圓的右焦點(diǎn)
,且與橢圓交與
兩點(diǎn),過線段
的中點(diǎn)與
垂直的直線交直線
于
點(diǎn),若
為等邊三角形,求直線
的方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com