【題目】已知定義在R上的連續函數g(x)滿足:①當x>0時,g′(x)>0恒成立(g′(x)為函數g(x)的導函數);②對任意的x∈R都有g(x)=g(﹣x),又函數f(x)滿足:對任意的x∈R,都有
成立.當
時,f(x)=x3﹣3x.若關于x的不等式g[f(x)]≤g(a2﹣a+2)對x∈[﹣
,
]恒成立,則a的取值范圍是( )
A.a∈R
B.0≤a≤1
C.![]()
D.a≤0或a≥1
【答案】D
【解析】解:因為函數g(x)滿足:當x>0時,g′(x)>0恒成立且對任意x∈R都有g(x)=g(﹣x),
則函數g(x)為R上的偶函數且在[0,+∞)上為單調遞增函數,且有g(|x|)=g(x),
所以g[f(x)]≤g(a2﹣a+2)在R上恒成立|f(x)|≤|a2﹣a+2|對x∈[﹣
﹣2
,
+2
]恒成立,
只要使得定義域內|f(x)|max≤|a2﹣a+2|min , 由于當x∈[﹣
,
]時,f(x)=x3﹣3x,
求導得:f′(x)=3x2﹣3=3(x+1)(x﹣1),該函數過點(﹣
,0),(0,0),(
,0),
且函數在x=﹣1處取得極大值f(﹣1)=2,在x=1處取得極小值f(1)=﹣2,
又由于對任意的x∈R都有f(
+x)=﹣f(x)f(2
+x)=﹣f(
+x)=f(x)成立,
則函數f(x)為周期函數且周期為T=2
,
所以函數f(x)在x∈[﹣
,
]的最大值為2,
所以令2≤|a2﹣a+2|解得:a≥1或a≤0.
故選:D.
【考點精析】解答此題的關鍵在于理解利用導數研究函數的單調性的相關知識,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間
內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減.
科目:高中數學 來源: 題型:
【題目】某企業生產A,B兩種產品,根據市場調查與市場預測,A產品的利潤與投資成正比,其關系如圖(1);B產品的利潤與投資的算術平方根成正比,其關系如圖(2)(注:所示圖中的橫坐標表示投資金額,單位為萬元) ![]()
(1)分別求出A,B兩種產品的利潤表示為投資的函數關系式;
(2)該企業已籌集到10萬元資金,并全部投入A,B兩種產品的生產,問:怎樣分配這10萬元資金,才能使企業獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(數學文卷·2017屆湖北省黃岡市高三上學期期末考試第16題) “中國剩余定理”又稱“孫子定理”.1852年英國來華傳教偉烈亞利將《孫子算經》中“物不知數”問題的解法傳至歐洲.1874年,英國數學家馬西森指出此法符合1801年由高斯得出的關于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”. “中國剩余定理”講的是一個關于整除的問題,現有這樣一個整除問題:將2至2017這2016個數中能被3除余1且被5除余1的數按由小到大的順序排成一列,構成數列
,則此數列的項數為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校的平面示意圖為如下圖五邊形區域
,其中三角形區域
為生活區,四邊形區域
為教學區,
為學校的主要道路(不考慮寬度).
.
![]()
(1)求道路
的長度;(2)求生活區
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學生物興趣小組在學校生物園地種植了一批名貴樹苗,為了了解樹苗生長情況,從這批樹苗中隨機地測量了其中50棵樹苗的高度(單位:厘米).把這些高度列成了如下的頻率分布表:
![]()
(1)在這批樹苗中任取一棵,其高度不低于80厘米的概率大約是多少?
(2)這批樹苗的平均高度大約是多少?(用各組的中間值代替各組數據的平均值)
(3)為了進一步獲得研究資料,若從
組中移出一棵樹苗,從
組中移出兩棵樹苗進行試驗研究,則
組中的樹苗
和
組中的樹苗
同時被移出的概率是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,小華和小明兩個小伙伴在一起做游戲,他們通過劃拳(剪刀、石頭、布)比賽決勝誰首先登上第3個臺階,他們規定從平地開始,每次劃拳贏的一方登上一級臺階,輸的一方原地不動,平局時兩個人都上一級臺階,如果一方連續兩次贏,那么他將額外獲得一次上一級臺階的獎勵,除非已經登上第3個臺階,當有任何一方登上第3個臺階時,游戲結束,記此時兩個小伙伴劃拳的次數為
.
![]()
(1)求游戲結束時小華在第2個臺階的概率;
(2)求
的分布列和數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com