【題目】已知函數(shù)f(x)=
﹣kx2(k∈R)有四個(gè)不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是( )
A.k<0
B.k<1
C.0<k<1
D.k>1
【答案】D
【解析】解:分別畫(huà)出y=
與y=kx2的圖象如圖所示,當(dāng)k<0時(shí),y=kx2的開(kāi)口向下,此時(shí)與y=
只有一個(gè)交點(diǎn),顯然不符合題意,
當(dāng)k=0時(shí),此時(shí)與y=
只有一個(gè)交點(diǎn),顯然不符合題意,
當(dāng)k>0時(shí),x≥0時(shí),
f(x)=
﹣kx2=0,
即kx3+2k2﹣x=0,
即x(kx2+2kx﹣1)=0,即x=0,或kx2+2kx﹣1=0,
此時(shí)有唯一的解,即△=4k2+4k=0,解得k=﹣1(舍去),
當(dāng)k>0時(shí),x<0時(shí),
f(x)=
﹣kx2=0,
即kx3+2k2+x=0,
kx2+2kx+1=0,
此時(shí)有兩個(gè)解,即△=4k2﹣4k>0,解得k>1,
綜上所述k>1
故選:D.![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知隨機(jī)變量X服從正態(tài)分布N(μ,σ2),且P(μ-2σ<X<μ+2σ)=0.954 4,P(μ-σ<X<μ+σ)=0.682 6.若μ=4,σ=1,則P(5<X<6)=( )
A. 0.135 9 B. 0.135 8 C. 0.271 8 D. 0.271 6;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知P(x0 , y0)是橢圓C:
=1上一點(diǎn),過(guò)原點(diǎn)的斜率分別為k1 , k2的兩條直線(xiàn)與圓(x﹣x0)2+(y﹣y0)2=
均相切,且交橢圓于A,B兩點(diǎn).![]()
(1)求證:k1k2=﹣
;
(2)求|OA||OB|得最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法錯(cuò)誤的是( )
A. 命題“若x2-4x+3=0,則x=3”的逆否命題是:“若x≠3,則x2-4x+3≠0”
B. “x>1”是“|x|>0”的充分不必要條件
C. 若p且q為假命題,則p、q均為假命題
D. 命題p:“x0∈R使得
+x0+1<0”,則
p:“x∈R,均有x2+x+1≥0”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:
=1的左頂點(diǎn)為A(﹣3,0),左焦點(diǎn)恰為圓x2+2x+y2+m=0(m∈R)的圓心M.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)A且與圓M相切于點(diǎn)B的直線(xiàn),交橢圓C于點(diǎn)P,P與橢圓C右焦點(diǎn)的連線(xiàn)交橢圓于Q,若三點(diǎn)B,M,Q共線(xiàn),求實(shí)數(shù)m的值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
,
,(其中
).
(1)
時(shí),求函數(shù)
的極值;
(2)證:存在
,使得
在
內(nèi)恒成立,且方程
在
內(nèi)有唯一解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)如果對(duì)于任意的
,都有
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖所示,則f(x)的單調(diào)遞減區(qū)間為( ) ![]()
A.(kπ﹣
,kπ+
,),k∈z
B.(2kπ﹣
,2kπ+
),k∈z
C.(k﹣
,k+
),k∈z
D.(
,2k+
),k∈z
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角梯形ABCD與等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB=2CD=2BC,EA⊥EB.
(Ⅰ)求證:AB⊥DE;
(Ⅱ)求直線(xiàn)EC與平面ABE所成角的正弦值;
(Ⅲ)線(xiàn)段EA上是否存在點(diǎn)F,使EC∥平面FBD?若存在,求出
;若不存在,說(shuō)明理由.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com