【題目】設(shè)函數(shù)
在區(qū)間
上的最小值為
.
(1)求
;
(2)若
在
上恒成立,求實(shí)數(shù)
的取值范圍;
(3)當(dāng)
時(shí),求滿足
的
的取值范圍.
【答案】(Ⅰ)詳見(jiàn)解析;(Ⅱ)
;(Ⅲ)
.
【解析】試題分析:(1)由對(duì)稱軸的位置,分類討論得
;(2)
,得
在
上恒成立,所以
;(3)因?yàn)?/span>
時(shí),
,
時(shí),
,所以
即
設(shè)
,討論單調(diào)性知函數(shù)
在
上單調(diào)遞減,所以
的取值范圍是
.
試題解析:
.解法一:(Ⅰ)由題意知,函數(shù)
的圖像為開(kāi)口向上的拋物線,且對(duì)稱軸為
,
當(dāng)
時(shí),函數(shù)
在
單調(diào)遞增,則
,
當(dāng)
時(shí),函數(shù)
在
單調(diào)遞減,在
單調(diào)遞增,則
,
所以,
(Ⅱ)
, ![]()
,即
在
上恒成立,
設(shè)
,
,則
![]()
,
,又
,![]()
,即![]()
函數(shù)
在
上單調(diào)遞減,
,
.
(Ⅲ)
時(shí),
,
時(shí),
,
∴
即
設(shè)
,則其定義域?yàn)?/span>![]()
設(shè)
,易得該函數(shù)在
上單調(diào)遞減,
設(shè)
,由
知,該函數(shù)也在
上單調(diào)遞減,
由上可知函數(shù)
在
上單調(diào)遞減,
又
所以![]()
即滿足條件的
的取值范圍為
.
解法二:(Ⅰ)同法一
(Ⅱ)因?yàn)?/span>
所以
,
由
,得
,
設(shè)
,題意等價(jià)于:
,即
解得: ![]()
(Ⅲ)
時(shí),
,
時(shí), ![]()
∴
即![]()
,即
,
設(shè)
其對(duì)稱軸
,開(kāi)口向下,
所以
在
單調(diào)遞增,
設(shè)
在
單調(diào)遞減,且
,
所以,滿足條件的
的取值范圍為
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A,B,C三點(diǎn)滿足
。
(1)求證:A,B,C三點(diǎn)共線;
(2)若A(1,cosx),B(1+sinx,cosx),且x∈[0,
],函數(shù)f(x)=
(2m+
)|
|+m2的最小值為5,求實(shí)數(shù)m的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+y2-2x+4y-4=0,
(1)求圓C關(guān)于直線
對(duì)稱的圓的方程;
(2)問(wèn)是否存在斜率為1的直線l,使l被圓C截得弦AB,且以AB為直徑的圓經(jīng)過(guò)點(diǎn)
?若存在,求出直線l的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)科學(xué)院亞熱帶農(nóng)業(yè)生態(tài)研究所2017年10月16日正式發(fā)布一種水稻新種質(zhì),株高可達(dá)2.2米以上,具有高產(chǎn)、抗倒伏、抗病蟲(chóng)害、酎淹澇等特點(diǎn),被認(rèn)為開(kāi)啟了水稻研制的一扇新門(mén).以下是
兩組實(shí)驗(yàn)田中分別抽取的6株巨型稻的株高,數(shù)據(jù)如下(單位:米).
: 1.7 1.8 1.9 2.2 2.4 2.5
: 1.8 1.9 2.0 2.0 2.4 2.5
(1)繪制
兩組數(shù)據(jù)的莖葉圖,并求出
組數(shù)據(jù)的中位數(shù)和
組數(shù)據(jù)的方差;
(2)從
組樣本中隨機(jī)抽取2株,請(qǐng)列出所有的基本事件,并求至少有一株超過(guò)
組株高平均值的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】寧德被譽(yù)為“中國(guó)大黃魚(yú)之鄉(xiāng)”,海域面積4.46萬(wàn)平方公里,水產(chǎn)資源極為豐富.“寧德大黃魚(yú)”作為福建寧德地理標(biāo)志產(chǎn)品,同時(shí)也是寧德最具區(qū)域特色的海水養(yǎng)殖品種,全國(guó)80%以上的大黃魚(yú)產(chǎn)自寧德,年產(chǎn)值超過(guò)60億元.現(xiàn)有一養(yǎng)殖戶為了解大黃魚(yú)的生長(zhǎng)狀況,對(duì)其漁場(chǎng)中100萬(wàn)尾魚(yú)的凈重(單位:克)進(jìn)行抽樣檢測(cè),將抽樣所得數(shù)據(jù)繪制成頻率分布直方圖如圖.其中產(chǎn)品凈重的范圍是
,已知樣本中產(chǎn) 品凈重小于100克的有360尾.
![]()
(1)計(jì)算樣本中大黃魚(yú)的數(shù)量;
(2)假設(shè)樣本平均值不低于101.3克的漁場(chǎng)為
級(jí)漁場(chǎng),否則為
級(jí)漁場(chǎng).那么要使得該漁場(chǎng)為
級(jí)漁場(chǎng),則樣本中凈重在
的大黃魚(yú)最多有幾尾?
(3)為提升養(yǎng)殖效果,該養(yǎng)殖戶進(jìn)行低沉性配合飼料養(yǎng)殖,凈重小于98克的每4萬(wàn)尾合用一個(gè)網(wǎng)箱,大于等于98克的每3萬(wàn)尾合用一個(gè)網(wǎng)箱.根據(jù)(2)中所求的最大值,估計(jì)該養(yǎng)殖戶需要準(zhǔn)備多少個(gè)網(wǎng)箱?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列
滿足
,
是數(shù)列
的前
項(xiàng)和.
(1)求數(shù)列
的通項(xiàng)公式
;
(2)令
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖是正方體的平面展開(kāi)圖,在這個(gè)正方體中:①
與
平行;②
與
是異面直線;③
與
成
角;④
與
垂直;以上四個(gè)命題中,正確的是( )![]()
A.①②③
B.②④
C.②③④
D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),直線
的方程為
,以
為極點(diǎn),以
軸正半軸為極軸,建立極坐標(biāo)系,
(1)求曲線
和直線
的極坐標(biāo)方程;
(2)若直線
與曲線
交于
兩點(diǎn),求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)
(其中
)的部分圖象如圖所示,為了得到
的圖象,只要將
的圖象
![]()
A. 先向右平移
個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的
倍,縱坐標(biāo)不變
B. 先向右平移
個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的
倍,縱坐標(biāo)不變
C. 先向左平移
個(gè)單位長(zhǎng)度 ,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的
倍,縱坐標(biāo)不變
D. 先向左平移
個(gè)單位長(zhǎng)度, 再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的
倍,縱坐標(biāo)不變
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com