【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是邊長2的正方形,E,F分別為線段DD1 , BD的中點. ![]()
(1)求證:EF∥平面ABC1D1;
(2)AA1=2
,求異面直線EF與BC所成的角的大小.
【答案】
(1)證明:連結BD1,
![]()
在△DD1B中,E、F分別是D1D、DB的中點,
∴EF是△DD1B的中位線,
∴EF∥D1B,
∵D1B平面ABC1D1,EF平面ABC1D1,
∴EF∥平面ABC1D1
(2)解:∵AA1=2
,AB=2,EF∥BD1,
∴∠D1BC是異面直線EF與BC所成的角(或所成角的補角),
在直四棱柱ABCD﹣A1B1C1D1中,BC⊥平面CDD1C1,CD1平面CDD1C1,
∴BC⊥CD1.
在Rt△D1C1C中,BC=2,CD1=2
,D1C⊥BC,
∴tan∠D1BC=
,
∴∠D1BC=60°,
∴異面直線EF與BC所成的角的大小為60°
【解析】(1)連結BD1 , 推導出EF∥D1B,由此能證明EF∥平面ABC1D1 . (2)由EF∥BD1 , 知∠D1BC是異面直線EF與BC所成的角(或所成角的補角),由此能求出異面直線EF與BC所成的角的大小.
【考點精析】認真審題,首先需要了解異面直線及其所成的角(異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發現兩條異面直線間的關系),還要掌握直線與平面平行的判定(平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行)的相關知識才是答題的關鍵.
科目:高中數學 來源: 題型:
【題目】某次乒乓球比賽的決賽在甲乙兩名選手之間舉行,比賽采用五局三勝制,按以往比賽經驗,甲勝乙的概率為
.
(Ⅰ)求比賽三局甲獲勝的概率;
(Ⅱ)求甲獲勝的概率;
(Ⅲ)設甲比賽的次數為
,求
的數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某省高考改革實施方案指出:該省高考考生總成績將由語文、數學、外語3門統一高考成績和學生自主選擇的學業水平等級性考試科目共同構成,該省教育廳為了解正在讀高中的學生家長對高考改革方案所持的贊成態度,隨機從中抽取了100名城鄉家長作為樣本進行調查,調查結果顯示樣本中有25人持不贊成意見,如圖是根據樣本的調查結果繪制的等高條形圖.
(1)根據已知條件與等高條形圖完成下面的
列聯表,并判斷我們能否有95%的把握認為“贊成高考改革方案與城鄉戶口有關”?
![]()
注:
,其中
.
![]()
(2)用樣本的頻率估計概率,若隨機在全省不贊成高考改革的家長中抽取3個,記這3個家長中是城鎮戶口的人數為
,試求
的分布列及數學期望
.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的首項a1=1,前n項和Sn滿足關系式:3tSn﹣(2t+3)Sn﹣1=3t(t>0,n=2,3,4…)
(1)求證:數列{an}是等比數列;
(2)設數列{an}的公比為f(t),作數列{bn},使
,求數列{bn}的通項bn;
(3)求和:b1b2﹣b2b3+b3b4﹣b4b5+…+b2n﹣1b2n﹣b2nb2n+1 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四個命題:
①經過定點P0(x0 , y0)的直線都可以用方程y﹣y0=k(x﹣x0)表示;
②經過定點A(0,b)的直線都可以用方程y=kx+b表示;
③不經過原點的直線都可以用方程
+
=1表示;
④經過任意兩個不同的 點P1(x1 , y1)、P2(x2 , y2)的直線都可以用方程(y﹣y1)(x2﹣x1)=(x﹣x1)(y2﹣y1)表示;
其中真命題的個數為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com