(本小題滿分12分)
設(shè)函數(shù)
的單調(diào)減區(qū)間是(1,2)
⑴求
的解析式;
⑵若對(duì)任意的
,關(guān)于
的不等式
在
時(shí)有解,求實(shí)數(shù)
的取值范圍.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
為實(shí)數(shù),
,
為
的導(dǎo)函數(shù).
(Ⅰ)若
,求
在
上的最大值和最小值;
(Ⅱ)若
在
和
上均單調(diào)遞增,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.(e是自然對(duì)數(shù)的底數(shù))
(1)判斷
在
上是否是單調(diào)函數(shù),并寫出
在該區(qū)間上的最小值;
(2)證明:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
(1)若曲線
在點(diǎn)
處的切線的傾斜角為
,求實(shí)數(shù)
的值;
(2)若函數(shù)
在區(qū)間
上單調(diào)遞增,求實(shí)數(shù)實(shí)數(shù)
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
的圖像在點(diǎn)
處的切線的傾斜角為
,問(wèn):
在什么范圍取值時(shí),函數(shù)
在區(qū)間
上總存在極值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知
.
(Ⅰ)若
在
上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)常數(shù)
時(shí),設(shè)
,求
在
上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)已知函數(shù)
,在點(diǎn)
處的切
線方程是
(e為自然對(duì)數(shù)的底)。
(1)求實(shí)數(shù)
的值及
的解析式;
(2)若
是正數(shù),設(shè)
,求
的最小值;
(3)若關(guān)
于x的不等式
對(duì)一切
恒成立,求實(shí)數(shù)
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
在點(diǎn)
處的切線方程為
.
(I)求
的表達(dá)式;
(Ⅱ)
若
滿足
恒成立,則稱
是
的一個(gè)“上界函數(shù)”,如果函數(shù)
為
(
R)的一個(gè)“上界函數(shù)”,求t的取值范圍;
(Ⅲ)當(dāng)
時(shí),討論
在區(qū)間(0,2)上極值點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)設(shè)函數(shù)f(x)=x3+ax2-a2x+m(a>0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在x∈[-1,1]內(nèi)沒(méi)有極值點(diǎn),求a的取值范圍;
(Ⅲ)若對(duì)任意的a∈[
3,6],不等式f(x)≤1在x∈[-2,2]上恒成立,求m的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com