【題目】如圖,某運(yùn)動(dòng)員從A市出發(fā)沿海岸一條筆直公路以每小時(shí)15km的速度向東進(jìn)行長跑訓(xùn)練,長跑開始時(shí),在A市南偏東方向距A市75km,且與海岸距離為45km的海上B處有一艘劃艇與運(yùn)動(dòng)員同時(shí)出發(fā),要追上這位運(yùn)動(dòng)員.
![]()
(1)劃艇至少以多大的速度行駛才能追上這位運(yùn)動(dòng)員?
(2)求劃艇以最小速度行駛時(shí)的行駛方向與
所成的角.
(3)若劃艇每小時(shí)最快行駛11.25km,劃艇全速行駛,應(yīng)沿何種路線行駛才能盡快追上這名運(yùn)動(dòng)員,最快需多長時(shí)間?
【答案】(1)9
;(2)
;(3)劃艇應(yīng)垂直于海岸向北的方向行駛才能盡快追上這名運(yùn)動(dòng)員;
.
【解析】
(1)設(shè)速度為
,時(shí)間為
,由余弦定理可得
關(guān)于時(shí)間
的函數(shù),根據(jù)二次函數(shù)的性質(zhì)得出
的最小值;
(2)利用余弦定理計(jì)算
即可得出答案.
(3)假設(shè)劃艇沿著垂直于海岸的方向,即
方向行駛需要
,而
運(yùn)動(dòng)員剛好到點(diǎn)
,即可得出結(jié)果.
(1)設(shè)劃艇以![]()
的速度從
處出發(fā),沿
方向,![]()
后與運(yùn)動(dòng)員在
處相遇,
過
作
的垂線
,則
,
,
在
中,
,
,
,
則
,
.
由余弦定理,得
,
得
.
整理得:![]()
.
當(dāng)
,即
時(shí),
取得最小值81,即
,
所以劃艇至少以9
的速度行駛才能把追上這位運(yùn)動(dòng)員.
(2)當(dāng)![]()
時(shí),
在
中,
,
,
,
由余弦定理,得
,
所以
,
所以劃艇以最小速度行駛時(shí)的行駛方向與
所成的角為
.
(3)劃艇每小時(shí)最快行駛11.25km全速行駛,
假設(shè)劃艇沿著垂直于海岸的方向,即
方向行駛,而
,
此時(shí)到海岸距離最短,需要的時(shí)間最少,
所以需要:
,而
時(shí)運(yùn)動(dòng)員向東跑了:
,
而
,即
時(shí),劃艇和運(yùn)動(dòng)員相遇在點(diǎn)
.
所以劃艇應(yīng)垂直于海岸向北的方向行駛才能盡快追上這名運(yùn)動(dòng)員,最快需要
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
與
的圖象關(guān)于
軸對(duì)稱,當(dāng)函數(shù)
和
在區(qū)間
同時(shí)遞增或同時(shí)遞減時(shí),把區(qū)間
叫做函數(shù)
的“不動(dòng)區(qū)間”.若區(qū)間
為函數(shù)
的“不動(dòng)區(qū)間”,則實(shí)數(shù)
的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,x
R其中a>0.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間(-3,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;
(Ⅲ)當(dāng)a=1時(shí),設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記
,求函數(shù)g(t)在區(qū)間[-4,-1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016高考新課標(biāo)II,理15)有三張卡片,分別寫有1和2,1和3,2和3.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:“我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:“我與丙的卡片上相同的數(shù)字不是1”,丙說:“我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海水養(yǎng)殖場進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下:
![]()
(1)根據(jù)箱產(chǎn)量的頻率分布直方圖填寫下面
列聯(lián)表,從等高條形圖中判斷箱產(chǎn)量是否與新、舊網(wǎng)箱養(yǎng)殖方法有關(guān);
(2)根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān)?
箱產(chǎn)量<50kg | 箱產(chǎn)量≥50kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
參考公式:
(1)給定臨界值表
P(K | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(2)
其中
為樣本容量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,曲線
在點(diǎn)
處的切線方程為
.
(1)求
的解析式;
(2)證明:曲線
上任一點(diǎn)處的切線與直線
和直線
所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,且過點(diǎn)
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過橢圓
的左焦點(diǎn)的直線
與橢圓
交于
兩點(diǎn),直線
過坐標(biāo)原點(diǎn)且與直線
的斜率互為相反數(shù).若直線
與橢圓交于
兩點(diǎn)且均不與點(diǎn)
重合,設(shè)直線
與
軸所成的銳角為
,直線
與
軸所成的銳角為
,判斷
與
的大小關(guān)系并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓
:
的左右焦點(diǎn)分別為
,
,左右頂點(diǎn)分別為
,
,
為橢圓
上的動(dòng)點(diǎn)(不與
,
重合),且直線
與
的斜率的乘積為
.
![]()
(1)求橢圓
的方程;
(2)過
作兩條互相垂直的直線
與
(均不與
軸重合)分別與橢圓
交于
,
,
,
四點(diǎn),線段
、
的中點(diǎn)分別為
、
,求證:直線
過定點(diǎn),并求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年電子商務(wù)蓬勃發(fā)展,
年某網(wǎng)購平臺(tái)“雙
”一天的銷售業(yè)績高達(dá)
億元人民幣,平臺(tái)對(duì)每次成功交易都有針對(duì)商品和快遞是否滿意的評(píng)價(jià)系統(tǒng).從該評(píng)價(jià)系統(tǒng)中選出
次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),網(wǎng)購者對(duì)商品的滿意率為
,對(duì)快遞的滿意率為
,其中對(duì)商品和快遞都滿意的交易為
次.
(1)根據(jù)已知條件完成下面的
列聯(lián)表,并回答能否有
的把握認(rèn)為“網(wǎng)購者對(duì)商品滿意與對(duì)快遞滿意之間有關(guān)系”?
對(duì)快遞滿意 | 對(duì)快遞不滿意 | 合計(jì) | |
對(duì)商品滿意 |
| ||
對(duì)商品不滿意 | |||
合計(jì) |
|
(2)若將頻率視為概率,某人在該網(wǎng)購平臺(tái)上進(jìn)行的
次購物中,設(shè)對(duì)商品和快遞都滿意的次數(shù)為隨機(jī)變量
,求
的分布列和數(shù)學(xué)期望
.
附:
(其中
為樣本容量)
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com