【題目】設(shè)三棱錐
的底面是正三角形,側(cè)棱長均相等,
是棱
上的點(diǎn)(不含端點(diǎn)),記直線
與直線
所成角為
,直線
與平面
所成角為
,二面角
的平面角為
,則( )
A.
B. ![]()
C.
D. ![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
(
,且
).
(1)當(dāng)
(其中
,且t為常數(shù))時(shí),
是否存在最小值,如果存在,求出最小值;如果不存在,請說明理由;
(2)當(dāng)
時(shí),求滿足不等式
的實(shí)數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),在極坐標(biāo)系中,圓C的極坐標(biāo)方程為:![]()
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線
交于
兩點(diǎn),若點(diǎn)的坐標(biāo)為
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)為了解群眾上下班共享單車使用情況,根據(jù)年齡按分層抽樣的方式調(diào)查了該地區(qū)50名群眾,他們的年齡頻數(shù)及使用共享單車人數(shù)分布如下表:
年齡段 | 20~29 | 30~39 | 40~49 | 50~60 |
頻數(shù) | 12 | 18 | 15 | 5 |
經(jīng)常使用共享單車 | 6 | 12 | 5 | 1 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面的
列聯(lián)表,并判斷是否有95%的把握認(rèn)為以40歲為分界點(diǎn)對是否經(jīng)常使用共享單車有差異?
年齡低于40歲 | 年齡不低于40歲 | 總計(jì) | |
經(jīng)常使用共享單車 | |||
不經(jīng)常使用共享單車 | |||
總計(jì) |
附:
,
.
| 0.25 | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
| 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
(2)若采用分層抽樣的方式從年齡低于40歲且經(jīng)常使用共享單車的群眾中選出6人,再從這6人中隨機(jī)抽取2人,求這2人中恰好有1人年齡在30~39歲的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形
所在的半平面和直角梯形
所在的半平面成
的二面角,
,
,
,
,
,
.
![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)試問在線段
上是否存在一點(diǎn)
,使銳二面角
的余弦值為
.若存在,請求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)解關(guān)于x的不等式
;
(2)對任意的
(﹣1,2),
恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1是由矩形
和菱形
組成的一個(gè)平面圖形,其中
,
,將其沿
折起使得
與
重合,連結(jié)
,如圖2.
(1)證明圖2中的
四點(diǎn)共面,且平面
平面
;
(2)求圖2中的四邊形
的面積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)盒子中,放有標(biāo)號(hào)分別為1,2,3的三張卡片,現(xiàn)從這個(gè)盒子中,有放回地先后抽得兩張卡片的標(biāo)號(hào)分別為x、y,設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)P的坐標(biāo)為
記
.
(1)求隨機(jī)變量
的最大值,并求事件“
取得最大值”的概率;
(2)求隨機(jī)變量
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2015年推出一種新型家用轎車,購買時(shí)費(fèi)用為16.9萬元,每年應(yīng)交付保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)及汽油費(fèi)共1.2萬元,汽車的維修費(fèi)為:第一年無維修費(fèi)用,第二年為0.2萬元,從第三年起,每年的維修費(fèi)均比上一年增加0.2萬元.
(I)設(shè)該輛轎車使用n年的總費(fèi)用(包括購買費(fèi)用、保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)及維修費(fèi))為f(n),求f(n)的表達(dá)式;
(II)這種汽車使用多少報(bào)廢最合算(即該車使用多少年,年平均費(fèi)用最少)?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com