【題目】O為坐標原點,直線l與圓x2+y2=2相切.
(1)若直線l分別與x、y軸正半軸交于A、B兩點,求△AOB面積的最小值及面積取得最小值時的直線l的方程.
(2)設(shè)直線l交橢圓
=1于P、Q兩點,M為PQ的中點,求|OM|的取值范圍.
【答案】
(1)解:設(shè)直線l的方程為
=1(a,b>0),
由直線和圓x2+y2=4相切,可得
=
,
即有
=
≥
,即ab≥4,
當且僅當a=b=2時,取得等號.
則△AOB面積S=
ab的最小值為2;
此時直線的方程為x+y﹣2=0
(2)解:若直線的斜率不存在,設(shè)為x=t,
由直線和圓相切可得,t=﹣
或
.
代入橢圓方程可得,y=±
,
可得中點M坐標為(﹣
,0)或(
,0),|OM|=
;
設(shè)直線l的方程為y=kx+m,代入橢圓方程可得,
(1+2k2)x2+4kmx+2m2﹣6=0,
△=16k2m2﹣4(1+2k2)(2m2﹣6)>0,
即為m2<3+6k2,
由直線和圓相切,可得
=
,
即為m2=2+2k2,由2+2k2<3+6k2,可得k∈R,
設(shè)P,Q的坐標為(x1,y1),(x2,y2),
可得x1+x2=﹣
,中點M的坐標為(﹣
,
),
即有|OM|=
= ![]()
設(shè)1+2k2=t(t≥1),則|OM|=
= ![]()
=
,由t≥1可得t=2取得最大值
,
t=1時,取得最小值
.
故|OM|的范圍是[
,
]
【解析】(1)設(shè)出直線方程,由直線和圓相切的條件:d=r,結(jié)合基本不等式,即可得到面積的最小值和此時直線的方程;(2)討論直線的斜率不存在和存在,設(shè)出直線方程為y=kx+m,代入橢圓方程,運用韋達定理和中點坐標公式,結(jié)合判別式大于0,化簡整理即可得到所求范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形
中
,E為
的中點,將
沿
翻折到
的位置,
平面
,
為
的中點,則在翻折過程中,下列結(jié)論正確的是( )
![]()
A.恒有
平面![]()
B.B與M兩點間距離恒為定值
C.三棱錐
的體積的最大值為![]()
D.存在某個位置,使得平面
⊥平面![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知
是遞增數(shù)列,其前
項和為
,
,且
,
.
(Ⅰ)求數(shù)列
的通項
;
(Ⅱ)是否存在
使得
成立?若存在,寫出一組符合條件的
的值;若不存在,請說明理由;
(Ⅲ)設(shè)
,若對于任意的
,不等式
恒成立,求正整數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+1.
(Ⅰ)證明:當x>0時,f(x)≤x;
(Ⅱ)設(shè)
,若g(x)≥0對x>0恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險公司開設(shè)的某險種的基本保費為
萬元,今年參加該保險的人來年繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人的下一年度的保費與其與本年度的出險次數(shù)的關(guān)聯(lián)如下:
本年度出險次數(shù) |
|
|
|
|
|
|
下一次保費(單位:萬元) |
|
|
|
|
|
|
設(shè)今年初次參保該險種的某人準備來年繼續(xù)參保該險種,且該參保人一年內(nèi)出險次數(shù)的概率分布列如下:
一年內(nèi)出險次數(shù) |
|
|
|
|
|
|
概率 |
|
|
|
|
|
|
(
)求此續(xù)保人來年的保費高于基本保費的概率.
(
)若現(xiàn)如此續(xù)保人來年的保費高于基本保費,求其保費比基本保費高出
的概率.
(
)求該續(xù)保人來年的平均保費與基本保費的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我市物價監(jiān)督部門為調(diào)研某公司新開發(fā)上市的一種產(chǎn)品銷售價格的合理性,對該公司的產(chǎn)品的銷售與價格進行了統(tǒng)計分析,得到如下數(shù)據(jù)和散點圖:
定價 | 10 | 20 | 30 | 40 | 50 | 60 |
年銷售 | 1150 | 643 | 424 | 262 | 165 | 86 |
| 14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
![]()
圖(1)為
散點圖,圖(2)為
散點圖.
(Ⅰ)根據(jù)散點圖判斷
與
,
與
哪一對具有較強的線性相關(guān)性(不必證明);
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果和參考數(shù)據(jù),建立
關(guān)于
的回歸方程(線性回歸方程中的斜率和截距均保留兩位有效數(shù)字);
(Ⅲ)定價為多少時,年銷售額的預(yù)報值最大?(注:年銷售額
定價
年銷售)
參考數(shù)據(jù):
,
,
,
,
,
,
,
,
參考公式:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4﹣4:極坐標與參數(shù)方程
極坐標系與直角坐標系xOy有相同的長度單位,以原點O為極點,以x軸正半軸為極軸.已知曲線C1的極坐標方程為
,曲線C2的極坐標方程為ρsinθ=a(a>0),射線
,
與曲線C1分別交異于極點O的四點A,B,C,D.
(Ⅰ)若曲線C1關(guān)于曲線C2對稱,求a的值,并把曲線C1和C2化成直角坐標方程;
(Ⅱ)求|OA||OC|+|OB||OD|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,
是橢圓上一點.
(1)求橢圓的標準方程;
(2)過橢圓右焦點
的直線與橢圓交于
兩點,
是直線
上任意一點.證明:直線
的斜率成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,C為圓周上一點,過C作圓O的切線l,過A作直線l的垂線AD,D為垂足,AD與圓O交于點E. ![]()
(1)求證:ABDE=BCCE;
(2)若AB=8,BC=4,求線段AE的長.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com