【題目】設(shè)橢圓
,定義橢圓
的“相關(guān)圓”方程為
.若拋物線
的焦點(diǎn)與橢圓
的一個(gè)焦點(diǎn)重合,且橢圓
短軸的一個(gè)端點(diǎn)和其兩個(gè)焦點(diǎn)構(gòu)成直角三角形.
(1)求橢圓
的方程和“相關(guān)圓”
的方程;
(2)過“相關(guān)圓”
上任意一點(diǎn)
的直線
與橢圓
交于
兩點(diǎn).
為坐標(biāo)原點(diǎn),若
,證明原點(diǎn)
到直線
的距離是定值,并求
的取值范圍.
【答案】(1)橢圓
的方程為
,“相關(guān)圓”
的方程為
;(2)
或
.
【解析】
(1)由已知條件計(jì)算出橢圓
的方程和“相關(guān)圓”
的方程
(2)直線與橢圓相交,聯(lián)立方程組,由
求出
之間關(guān)系,然后再表示出點(diǎn)到線的距離公式,即可求出結(jié)果
解:(1)因?yàn)槿魭佄锞
的焦點(diǎn)為
與橢圓
的一個(gè)焦點(diǎn)重合,所以
,又因?yàn)闄E圓
短軸的一個(gè)端點(diǎn)和其兩個(gè)焦點(diǎn)構(gòu)成直角三角形,所以
,
故橢圓
的方程為
,“相關(guān)圓”
的方程為![]()
(2)設(shè)
,
聯(lián)立方程組
得
,
,
即![]()
,![]()
![]()
由條件
得
,
所以原點(diǎn)
到直線
的距離是
,
由
得
為定值
又圓心到直線
的距離為
,直線
與圓有公共點(diǎn)
,滿足條件
由
,即
,∴
即![]()
又
,即
,所以
,即
或![]()
綜上,
或![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,
表示兩條不同的直線,
,
,
表示三個(gè)不同的平面,給出下列四個(gè)命題:
①
,
,
,則
;
②
,
,
,則
;
③
,
,
,則
;
④
,
,
,則![]()
其中正確命題的序號(hào)為( )
A. ①② B. ②③ C. ③④ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
,若函數(shù)y=f(f(x)﹣a)﹣1有三個(gè)零點(diǎn),則a的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對(duì)滿足條件3x+3y+8=2xy(x>0,y>0)的任意x、y,(x+y)2﹣a(x+y)+16≥0恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(﹣∞,8]B.[8,+∞)C.(﹣∞,10]D.[10,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差不為0的等差數(shù)列{an},其前n項(xiàng)和為Sn,若S10=100,a1,a2,a5成等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)bn=anan+1+an+an+1+1,求數(shù)列
的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近期,長沙市公交公司推出“湘行一卡通”
掃碼支付乘車活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,乘客只需利用手機(jī)下載“湘行一卡通”
,再通過掃碼即可支付乘車費(fèi)用.相比傳統(tǒng)的支付方式,掃碼支付方式極為便利,吸引了越來越多的人使用掃碼支付,某線路公交車隊(duì)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用掃碼支付的人次,用
表示活動(dòng)推出的天數(shù),
表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計(jì)數(shù)據(jù)如下表所示:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.
![]()
(1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi),
與
(
,
均為大于零的常數(shù))哪一個(gè)適宜作為掃碼支付的人次
關(guān)于活動(dòng)推出天數(shù)
的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結(jié)果及表中的數(shù)據(jù),建立
關(guān)于
的回歸方程,并預(yù)測活動(dòng)推出第
天使用掃碼支付的人次;
(3)推廣期結(jié)束后,車隊(duì)對(duì)乘客的支付方式進(jìn)行統(tǒng)計(jì),結(jié)果如下
支付方式 | 現(xiàn)金 | 乘車卡 | 掃碼 |
比例 |
|
|
|
假設(shè)該線路公交車票價(jià)為
元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡付的乘客享受
折優(yōu)惠,掃碼支付的乘客隨機(jī)優(yōu)惠,根據(jù)統(tǒng)計(jì)結(jié)果得知,使用掃碼支付的乘客中有
的概率享受
折優(yōu)惠,有
的概率享受
折優(yōu)惠,有
的概率享受
折優(yōu)惠.根據(jù)給定數(shù)據(jù)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,在不考慮其它因素的條件下,求一名乘客一次乘車的平均費(fèi)用.參考數(shù)據(jù):
|
|
|
|
|
|
|
|
|
|
其中:
,![]()
參考公式:對(duì)于一組數(shù)據(jù)
,
,…,
…,
,其回歸直線
的斜率和截距的最小二乘估計(jì)公式分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線過點(diǎn)(3,-2)且與橢圓4x2+9y2=36有相同的焦點(diǎn).
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)M在雙曲線上,F(xiàn)1,F(xiàn)2為左、右焦點(diǎn),且|MF1|+|MF2|=6
,試判別△MF1F2的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知五邊形ABECD由一個(gè)直角梯形ABCD與一個(gè)等邊三角形BCE構(gòu)成,如圖1所示,AB丄BC,AB//CD,且AB=2CD。將梯形ABCD沿著BC折起,如圖2所示,且AB丄平面BEC。
![]()
(1)求證:平面ABE丄平面ADE;
(2)若AB=BC,求二面角A-DE-B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)分別為
、
,過
的直線
交橢圓
、
兩點(diǎn),若
的最大值為5,則b的值為( )
A. 1 B.
C.
D. 2
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com