【題目】面對擁堵難題,濟(jì)南治堵不舍晝夜.軌道交通1號線已于2019年元旦通車試運(yùn)行,比原定工期提前8個月,其他各條地鐵線路的建設(shè)也正在如火如荼的進(jìn)行中,完工投入運(yùn)行后將給市民出行帶來便利.已知某條線路通車后,地鐵的發(fā)車時間間隔為
(單位:分鐘),并且
.經(jīng)市場調(diào)研測算,地鐵載客量與發(fā)車時間間隔
相關(guān),當(dāng)
時,地鐵為滿載狀態(tài),載客量為450人;當(dāng)
時,載客量會減少,減少的人數(shù)與
的平方成正比,且發(fā)車時間間隔為2分鐘時的載客量為258人,記地鐵載客量為
(單位:人).
(1)求
的表達(dá)式,并求當(dāng)發(fā)車時間間隔為5分鐘時,地鐵的載客量;
(2)若該線路每分鐘的利潤為
(單位:元),問當(dāng)發(fā)車時間間隔為多少時,該線路每分鐘的利潤最大.
【答案】(1)
,
人;
(2)當(dāng)發(fā)車時間間隔
分鐘時,該線路每分鐘的利潤最大,最大值為80元.
【解析】
(1)根據(jù)題意,結(jié)合題的條件,利用函數(shù)類型,利用待定系數(shù)法求得結(jié)果,將自變量代入解析式,求得對應(yīng)的函數(shù)值;
(2)先求出
的解析式,再求出分段函數(shù)每一段上的最大值,比較大小,求得最值.
(1)由題意知
(
為常數(shù) )
因?yàn)?/span>
,得
.
所以
得
(人).
(2)由
可得
,
當(dāng)
時,
,
任取
,且
,則
,
因?yàn)?/span>
,所以
,所以
,
所以
在
上為增函數(shù),
最大值為
;
當(dāng)
時,![]()
時等號成立.
所以當(dāng)發(fā)車時間間隔
分鐘時,該線路每分鐘的利潤最大,最大值為80元.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在二項(xiàng)式
的展開式中,前三項(xiàng)的系數(shù)成等差數(shù)列,把展開式中所有的項(xiàng)重新排成一列,則有理項(xiàng)都不相鄰的概率為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C1:
(a>b>0)的左焦點(diǎn)為F1(﹣1,0),且點(diǎn)P(0,1)在C1上.
(1)求橢圓C1的方程;
(2)設(shè)直線l同時與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)
在定義域內(nèi)存在實(shí)數(shù)
,使得
成立,則稱函數(shù)
有“飄移點(diǎn)”
.
Ⅰ
試判斷函數(shù)
及函數(shù)
是否有“飄移點(diǎn)”并說明理由;
Ⅱ
若函數(shù)
有“飄移點(diǎn)”,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)當(dāng)
時,求
的單調(diào)區(qū)間;
(Ⅱ)當(dāng)
時,求函數(shù)
在區(qū)間
上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年8月8日是我國第十個全民健身日,其主題是:新時代全民健身動起來。某市為了解全民健身情況,隨機(jī)從某小區(qū)居民中抽取了40人,將他們的年齡分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖。
![]()
(1)試求這40人年齡的平均數(shù)、中位數(shù)的估計值;
(2)(i)若從樣本中年齡在[50,70)的居民中任取2人贈送健身卡,求這2人中至少有1人年齡不低于60歲的概率;
(ⅱ)已知該小區(qū)年齡在[10,80]內(nèi)的總?cè)藬?shù)為2000,若18歲以上(含18歲)為成年人,試估計該小區(qū)年齡不超過80歲的成年人人數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)滿足f(﹣x)=f(x),且f(x+2)=f(x)+f(2),當(dāng)x∈[0,1]時,f(x)=x,那么在區(qū)間[﹣1,3]內(nèi),關(guān)于x的方程f(x)=kx+k+1(k∈R)且k≠﹣1恰有4個不同的根,則k的取值范圍是
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com