【題目】定義在(﹣1,+∞)上的單調函數f(x),對于任意的x∈(﹣1,+∞),f[f(x)﹣xex]=0恒成立,則方程f(x)﹣f′(x)=x的解所在的區間是( )
A.(﹣1,﹣
)
B.(0,
)
C.(﹣
,0)
D.(
)
【答案】A
【解析】解:由題意,可知f(x)﹣xeX是定值,不妨令t=f(x)﹣xeX,則f(x)=xeX+t,
又f(t)=tet+t=0,解得t=0,
所以有f(x)=xeX,
所以f′(x)=(x+1)eX,
令F(x)=f(x)﹣f′(x)﹣x=xex﹣(x+1)ex﹣x=﹣ex﹣x,
可得F(﹣1)=1﹣
>0,F(﹣
)=
﹣
<0
即F(x)的零點在區間(﹣1,﹣
)內
∴方程f(x)﹣f′(x)=x的解所在的區間是(﹣1,﹣
),
故選:A.
【考點精析】認真審題,首先需要了解利用導數研究函數的單調性(一般的,函數的單調性與其導數的正負有如下關系: 在某個區間
內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減).
科目:高中數學 來源: 題型:
【題目】己知函數f(x)是定義在R上的偶函數,f(x+1)為奇函數,f(0)=0,當x∈(0,1]時,f(x)=log2x,則在區間(8,9)內滿足方f(x)程f(x)+2=f(
)的實數x為 ( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-5:不等式選講
已知函數f(x)=|x+2|﹣2|x﹣1|.
(Ⅰ)求不等式f(x)≥﹣2的解集M;
(Ⅱ)對任意x∈[a,+∞],都有f(x)≤x﹣a成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex(其中e為自然對數的底數),g(x)=
x+m(m,n∈R).
(1)若T(x)=f(x)g(x),m=1﹣
,求T(x)在[0,1]上的最大值;
(2)若m=﹣
,n∈N* , 求使f(x)的圖象恒在g(x)圖象上方的最大正整數n.[注意:7<e2<
].
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知△ABC的兩個頂點A,B的坐標分別為(﹣1,0),(1,0),且AC、BC所在直線的斜率之積等于﹣2,記頂點C的軌跡為曲線E.
(1)求曲線E的方程;
(2)設直線y=2x+m(m∈R且m≠0)與曲線E相交于P、Q兩點,點M(
,1),求△MPQ面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}是各項均為正數的等比數列(公比q>1),bn=log2an , b1+b2+b3=3,b1b2b3=﹣3,則an=( )
A.![]()
B.![]()
C.![]()
D.
或 ![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com