【題目】已知向量
(
cosx+sinx,1),
(sinx,
),函數
.
(1)若f(θ)=3且θ∈(0,π),求θ;
(2)求函數f(x)的最小正周期T及單調遞增區間.
【答案】(1)θ
(2)最小正周期為π;單調遞增區間為[
kπ,
kπ],k∈Z
【解析】
(1)計算平面向量的數量積得出函數f(x)的解析式,求出f(θ)=3時θ的值;
(2)根據函數f(x)的解析式,求出它的最小正周期和單調遞增區間.
(1)向量
(
cosx+sinx,1),
(sinx,
),
函數![]()
=sinx(
cosx+sinx)![]()
sinxcosx+sin2x![]()
sin2x
cos2x+2
=sin(2x
)+2,
f(θ)=3時,sin(2θ
)=1,
解得2θ
2kπ,k∈Z,
即θ
kπ,k∈Z;
又θ∈(0,π),所以θ
;
(2)函數f(x)=sin(2x
)+2,
它的最小正周期為T
π;
令
2kπ≤2x
2kπ,k∈Z,
kπ≤x
kπ,k∈Z,
所以f(x)的單調遞增區間為[
kπ,
kπ],k∈Z.
科目:高中數學 來源: 題型:
【題目】箱子中有形狀、大小都相同的3只紅球,2只白球,從中一次摸出2只球.
(1)求摸到的2只球顏色不同的概率:
(2)求摸到的2只球中至少有1只紅球的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中正確的個數為( )
①兩個有共同始點且相等的向量,其終點可能不同;
②若非零向量
與
共線,則
、
、
、
四點共線;
③若非零向量
與
共線,則
;
④四邊形
是平行四邊形,則必有
;
⑤
,則
、
方向相同或相反.
A.
個B.
個C.
個D.
個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某親子游戲結束時有一項抽獎活動,抽獎規則是:盒子里面共有4個小球,小球上分別寫有0,1,2,3的數字,小球除數字外其他完全相同,每對親子中,家長先從盒子中取出一個小球,記下數字后將小球放回,孩子再從盒子中取出一個小球,記下小球上數字將小球放回.抽獎活動的獎勵規則是:①若取出的兩個小球上數字之積大于4,則獎勵飛機玩具一個;②若取出的兩個小球上數字之積在區間上
,則獎勵汽車玩具一個;③若取出的兩個小球上數字之積小于1,則獎勵飲料一瓶.
(1)求每對親子獲得飛機玩具的概率;
(2)試比較每對親子獲得汽車玩具與獲得飲料的概率,哪個更大?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(
,且
).
(Ⅰ)求函數
的單調區間;
(Ⅱ)求函數
在
上的最大值.
【答案】(Ⅰ)
的單調增區間為
,單調減區間為
.(Ⅱ)當
時,
;當
時,
.
【解析】【試題分析】(I)利用
的二階導數來研究求得函數
的單調區間.(II) 由(Ⅰ)得
在
上單調遞減,在
上單調遞增,由此可知
.利用導數和對
分類討論求得函數在
不同取值時的最大值.
【試題解析】
(Ⅰ)
,
設
,則
.
∵
,
,∴
在
上單調遞增,
從而得
在
上單調遞增,又∵
,
∴當
時,
,當
時,
,
因此,
的單調增區間為
,單調減區間為
.
(Ⅱ)由(Ⅰ)得
在
上單調遞減,在
上單調遞增,
由此可知
.
∵
,
,
∴
.
設
,
則
.
∵當
時,
,∴
在
上單調遞增.
又∵
,∴當
時,
;當
時,
.
①當
時,
,即
,這時,
;
②當
時,
,即
,這時,
.
綜上,
在
上的最大值為:當
時,
;
當
時,
.
[點睛]本小題主要考查函數的單調性,考查利用導數求最大值. 與函數零點有關的參數范圍問題,往往利用導數研究函數的單調區間和極值點,并結合特殊點,從而判斷函數的大致圖像,討論其圖象與
軸的位置關系,進而確定參數的取值范圍;或通過對方程等價變形轉化為兩個函數圖象的交點問題.
【題型】解答題
【結束】
22
【題目】選修4-4:坐標系與參數方程
在直角坐標系
中,圓
的普通方程為
. 在以坐標原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(Ⅰ) 寫出圓
的參數方程和直線
的直角坐標方程;
( Ⅱ ) 設直線
與
軸和
軸的交點分別為
,
為圓
上的任意一點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一次“漢馬”(武漢馬拉松比賽的簡稱)全程比賽中,50名參賽選手(24名男選手和26名女選手)的成績(單位:分鐘)分別為數據
(成績不為0).
(Ⅰ)24名男選手成績的莖葉圖如圖⑴所示,若將男選手成績由好到差編為1~24號,再用系統抽樣方法從中抽取6人,求其中成績在區間
上的選手人數;
![]()
(Ⅱ)如圖⑵所示的程序用來對這50名選手的成績進行統計.為了便于區別性別,輸入時,男選手的成績數據用正數,女選手的成績數據用其相反數(負數),請完成圖⑵中空白的判斷框①處的填寫,并說明輸出數值
和
的統計意義.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知A,B兩地相距24km.甲車、乙車先后從A地出發勻速駛向B地.甲車從A地到B地需行駛25min;乙車從A地到B地需行駛20min.乙車比甲車晚出發2min.
(1)分別寫出甲、乙兩車所行路程關于甲車行駛時間的函數關系式;
(2)甲、乙兩車何時在途中相遇?相遇時距A地多遠?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com