【題目】某“雙一流A類”大學就業部從該校2018年已就業的大學本科畢業生中隨機抽取了100人進行問卷調查,其中一項是他們的月薪收入情況,調查發現,他們的月薪收入在人民幣1.65萬元到2.35萬元之間,根據統計數據分組,得到如下的頻率分布直方圖:
![]()
(1)為感謝同學們對這項調查工作的支持,該校利用分層抽樣的方法從樣本的前兩組中抽出6人,各贈送一份禮品,并從這6人中再抽取2人,各贈送某款智能手機1部,求獲贈智能手機的2人月薪都不低于1.75萬元的概率;
(2)同一組數據用該區間的中點值作代表.
(i)求這100人月薪收入的樣本平均數
和樣本方差
;
(ii)該校在某地區就業的2018屆本科畢業生共50人,決定于2019國慶長假期間舉辦一次同學聯誼會,并收取一定的活動費用,有兩種收費方案:
方案一:設
,月薪落在區間
左側的每人收取400元,月薪落在區間
內的每人收到600元,月薪落在區間
右側的每人收取800元.
方案二:按每人一個月薪水的3%收取;用該校就業部統計的這100人月薪收入的樣本頻率進行估算,哪一種收費方案能收到更多的費用?
參考數據:
.
【答案】(1)
;(2)(i)2,
;(ii)方案一.
【解析】
(1)根據頻率分布直方圖求出前2組中的人數,由分層抽樣得抽取的人數,然后把6人編號,可寫出任取2人的所有組合,也可得出獲贈智能手機的2人月薪都不低于1.75萬元的所有組合,從而可計算出概率.
(2)根據頻率分布直方圖計算出均值和方差,然后求出區間
,結合頻率分布直方圖可計算出兩方案收取的費用.
(1)第一組有
人,第二組有
人.
按照分層抽樣抽6人時,第一組抽1人,記為
,第二組抽5人,記為
,
,
,
,
.
從這6人中抽2人共有15種:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
.
獲贈智能手機的2人月薪都不低于1.75萬元的10種:
,
,
,
,
,
,
,
,
,
.
于是獲贈智能手機的2人月薪都超過1.75萬元的概率
.
(2)(i)這100人月薪收入的樣本平均數
和樣本方差
分別是![]()
![]()
;
(ii)方案一:
![]()
月薪落在區間
左側收活動費用約為
(萬元);
月薪落在區間
收活動費用約為
(萬元);
月薪落在區間
右側收活動費用約為
(萬元);、
因此方案一,這50人共收活動費用約為3.01(萬元).
方案二:這50人共收活動費用約為
(萬元).
故方案一能收到更多的費用.
科目:高中數學 來源: 題型:
【題目】將函數f(x)=sin(2x+φ)+
cos(2x+φ)(0<φ<π)圖象向左平移
個單位后,得到函數的圖象關于點(
,0)對稱,則函數g(x)=cos(x+φ)在[﹣
,
]上的最小值是( )
A.﹣ ![]()
B.﹣ ![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,橢圓E:
=1(a>b>0)的離心率為
,焦距為2.(14分)
(Ⅰ)求橢圓E的方程.
(Ⅱ)如圖,該直線l:y=k1x﹣
交橢圓E于A,B兩點,C是橢圓E上的一點,直線OC的斜率為k2 , 且看k1k2=
,M是線段OC延長線上一點,且|MC|:|AB|=2:3,⊙M的半徑為|MC|,OS,OT是⊙M的兩條切線,切點分別為S,T,求∠SOT的最大值,并求取得最大值時直線l的斜率.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】幾位大學生響應國家的創業號召,開發了一款應用軟件.為激發大家學習數學的興趣,他們推出了“解數學題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數學問題的答案:已知數列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是20 , 接下來的兩項是20 , 21 , 再接下來的三項是20 , 21 , 22 , 依此類推.求滿足如下條件的最小整數N:N>100且該數列的前N項和為2的整數冪.那么該款軟件的激活碼是( )
A.440
B.330
C.220
D.110
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設{an}和{bn}是兩個等差數列,記cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs這s個數中最大的數.(13分)
(1)若an=n,bn=2n﹣1,求c1 , c2 , c3的值,并證明{cn}是等差數列;
(2)證明:或者對任意正數M,存在正整數m,當n≥m時,
>M;或者存在正整數m,使得cm , cm+1 , cm+2 , …是等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在矩形ABCD中,AB=1,AD=2,動點P在以點C為圓心且與BD相切的圓上.若
=λ
+μ
,則λ+μ的最大值為( )
A.3
B.2 ![]()
C.![]()
D.2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知袋子中放有大小和形狀相同的小球若干,其中標號為0的小球1個,標號為1的小球1個,標號為2的小球n個.若從袋子中隨機抽取1個小球,取到標號為2的小球的概率是
.
(1)求n的值;
(2)從袋子中不放回地隨機抽取2個小球,記第一次取出的小球標號為a,第二次取出的小球標號為b.
①記“
”為事件A,求事件A的概率;
②在區間
內任取2個實數
,求事件“
恒成立”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3+ax2+bx+1(a>0,b∈R)有極值,且導函數f′(x)的極值點是f(x)的零點.(極值點是指函數取極值時對應的自變量的值)
(Ⅰ)求b關于a的函數關系式,并寫出定義域;
(Ⅱ)證明:b2>3a;
(Ⅲ)若f(x),f′(x)這兩個函數的所有極值之和不小于﹣
,求a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com