【題目】在矩形ABCD中,AB=1,AD=2,動點P在以點C為圓心且與BD相切的圓上.若
=λ
+μ
,則λ+μ的最大值為( )
A.3
B.2 ![]()
C.![]()
D.2
【答案】A
【解析】解:如圖:以A為原點,以AB,AD所在的直線為x,y軸建立如圖所示的坐標系,![]()
則A(0,0),B(1,0),D(0,2),C(1,2),
∵動點P在以點C為圓心且與BD相切的圓上,
設圓的半徑為r,
∵BC=2,CD=1,
∴BD=
= ![]()
∴
BCCD=
BDr,
∴r=
,
∴圓的方程為(x﹣1)2+(y﹣2)2=
,
設點P的坐標為(
cosθ+1,
sinθ+2),
∵
=λ
+μ
,
∴(
cosθ+1,
sinθ﹣2)=λ(1,0)+μ(0,2)=(λ,2μ),
∴
cosθ+1=λ,
sinθ+2=2μ,
∴λ+μ=
cosθ+
sinθ+2=sin(θ+φ)+2,其中tanφ=2,
∵﹣1≤sin(θ+φ)≤1,
∴1≤λ+μ≤3,
故λ+μ的最大值為3,
故選:A
科目:高中數學 來源: 題型:
【題目】已知公比小于1的等比數列{an}的前n項和為Sn , a1=
,且13a2=3S3(n∈N*).
(1)求數列{an}的通項公式;
(2)設bn=log3(1﹣Sn+1),若
+
+…+
=
,求n.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2x,過點(2,0)的直線l交C與A,B兩點,圓M是以線段AB為直徑的圓.
(Ⅰ)證明:坐標原點O在圓M上;
(Ⅱ)設圓M過點P(4,﹣2),求直線l與圓M的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某“雙一流A類”大學就業部從該校2018年已就業的大學本科畢業生中隨機抽取了100人進行問卷調查,其中一項是他們的月薪收入情況,調查發現,他們的月薪收入在人民幣1.65萬元到2.35萬元之間,根據統計數據分組,得到如下的頻率分布直方圖:
![]()
(1)為感謝同學們對這項調查工作的支持,該校利用分層抽樣的方法從樣本的前兩組中抽出6人,各贈送一份禮品,并從這6人中再抽取2人,各贈送某款智能手機1部,求獲贈智能手機的2人月薪都不低于1.75萬元的概率;
(2)同一組數據用該區間的中點值作代表.
(i)求這100人月薪收入的樣本平均數
和樣本方差
;
(ii)該校在某地區就業的2018屆本科畢業生共50人,決定于2019國慶長假期間舉辦一次同學聯誼會,并收取一定的活動費用,有兩種收費方案:
方案一:設
,月薪落在區間
左側的每人收取400元,月薪落在區間
內的每人收到600元,月薪落在區間
右側的每人收取800元.
方案二:按每人一個月薪水的3%收取;用該校就業部統計的這100人月薪收入的樣本頻率進行估算,哪一種收費方案能收到更多的費用?
參考數據:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于給定的正整數k,若數列{an}滿足:an﹣k+an﹣k+1+…+an﹣1+an+1+…an+k﹣1+an+k=2kan對任意正整數n(n>k)總成立,則稱數列{an}是“P(k)數列”.
(Ⅰ)證明:等差數列{an}是“P(3)數列”;
(Ⅱ)若數列{an}既是“P(2)數列”,又是“P(3)數列”,證明:{an}是等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在同一個平面內,向量
,
,
的模分別為1,1,
,
與
的夾角為α,且tanα=7,
與
的夾角為45°.若
=m
+n
(m,n∈R),則m+n= . ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某園林基地培育了一種新觀賞植物,經過了一年的生長發育,技術人員從中抽取了部分植株的高度(單位:厘米)作為樣本(樣本容量為
)進行統計,按
分組做出頻率分布直方圖,并作出樣本高度的莖葉圖(圖中僅列出了高度在
的數據).
![]()
(1)求樣本容量
和頻率分布直方圖中的![]()
(2)在選取的樣本中,從高度在80厘米以上(含80厘米)的植株中隨機抽取3株,設隨機變量
表示所抽取的3株高度在
內的株數,求隨機變量
的分布列及數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com