【題目】將函數f(x)=2
cos2x﹣2sinxcosx﹣
的圖象向左平移t(t>0)個單位,所得圖象對應的函數為奇函數,則t的最小值為( )
A.![]()
B.![]()
C.![]()
D.![]()
【答案】D
【解析】解:將函數f(x)=2
cos2x﹣2sinxcosx﹣
=
cos2x﹣sin2x=2cos(2x+
)的圖象 向左平移t(t>0)個單位,可得y=2cos(2x+2t+
)的圖象.
由于所得圖象對應的函數為奇函數,則2t+
=kπ+
,k∈Z,
則t的最小為
,
故選:D.
【考點精析】通過靈活運用函數y=Asin(ωx+φ)的圖象變換,掌握圖象上所有點向左(右)平移
個單位長度,得到函數
的圖象;再將函數
的圖象上所有點的橫坐標伸長(縮短)到原來的
倍(縱坐標不變),得到函數
的圖象;再將函數
的圖象上所有點的縱坐標伸長(縮短)到原來的
倍(橫坐標不變),得到函數
的圖象即可以解答此題.
科目:高中數學 來源: 題型:
【題目】在三棱錐ABCD中,BC⊥CD,Rt△BCD斜邊上的高為1,三棱錐ABCD的外接球的直徑是AB,若該外接球的表面積為16π,則三棱錐ABCD體積的最大值為( )
A.![]()
B.![]()
C.1
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設離心率為
的橢圓E:
+
=1(a>b>0)的左、右焦點為F1 , F2 , 點P是E上一點,PF1⊥PF2 , △PF1F2內切圓的半徑為
﹣1.
(1)求E的方程;
(2)矩形ABCD的兩頂點C、D在直線y=x+2,A、B在橢圓E上,若矩形ABCD的周長為
,求直線AB的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司購買了A,B,C三種不同品牌的電動智能送風口罩.為了解三種品牌口罩的電池性能,現采用分層抽樣的方法,從三種品牌的口罩中抽出25臺,測試它們一次完全充電后的連續待機時長,統計結果如下(單位:小時):
A | 4 | 4 | 4.5 | 5 | 5.5 | 6 | 6 | |||
B | 4.5 | 5 | 6 | 6.5 | 6.5 | 7 | 7 | 7.5 | ||
C | 5 | 5 | 5.5 | 6 | 6 | 7 | 7 | 7.5 | 8 | 8 |
(1)已知該公司購買的C品牌電動智能送風口罩比B品牌多200臺,求該公司購買的B品牌電動智能送風口罩的數量;
(2)從A品牌和B品牌抽出的電動智能送風口罩中,各隨機選取一臺,求A品牌待機時長高于B品牌的概率;
(3)再從A,B,C三種不同品牌的電動智能送風口罩中各隨機抽取一臺,它們的待機時長分別是a,b,c(單位:小時).這3個新數據與表格中的數據構成的新樣本的平均數記為μ1 , 表格中數據的平均數記為μ0 . 若μ0≤μ1 , 寫出a+b+c的最小值(結論不要求證明).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:
的離心率為
,右焦點為F,點B(0,1)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點
的直線交橢圓C于M,N兩點,交直線x=2于點P,設
,
,求證:λ+μ為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的中心在坐標原點,焦點在
軸上,橢圓
上的點到焦點距離的最大值為3,最小值為1.
(1)求橢圓
的標準方程;
(2)若直線
:
與橢圓
相交于
,
兩點(
,
不是左右頂點),且以
為直徑的圓過橢圓
的右頂點.求證:直線
過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】全國大學生機器人大賽是由共青團中央,全國學聯,深圳市人民政府聯合主辦的賽事,是中國最具影響力的機器人項目,是全球獨創的機器人競技平臺.全國大學生機器人大賽比拼的是參賽選手們的能力,堅持和態度,展現的是個人實力以及整個團隊的力量.2015賽季共吸引全國240余支機器人戰隊踴躍報名,這些參賽戰隊來自全國六大賽區,150余所高等院校,其中不乏北京大學,清華大學,上海交大,中國科大,西安交大等眾多國內頂尖高校,經過嚴格篩選,最終由111支機器人戰隊參與到2015年全國大學生機器人大賽的激烈角逐之中,某大學共有“機器人”興趣團隊1000個,大一、大二、大三、大四分別有100,200,300,400個,為挑選優秀團隊,現用分層抽樣的方法,從以上團隊中抽取20個團隊.
(1)應從大三抽取多少個團隊?
(2)將20個團隊分為甲、乙兩組,每組10個團隊,進行理論和實踐操作考試(共150分),甲、乙兩組的分數如下:
甲:125,141,140,137,122,114,119,139,121,142
乙:127,116,144,127,144,116,140,140,116,140
從甲、乙兩組中選一組強化訓練,備戰機器人大賽.從統計學數據看,若選擇甲組,理由是什么?若選擇乙組,理由是什么?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數
在區間
上的圖像如圖所示,將該函數圖像上各點的橫坐標縮短到原來的一半(縱坐標不變),再向右平移
個單位長度后,所得到的圖像關于直線
對稱,則
的最小值為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com