【題目】已知函數f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a為常數)
(1)若對于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范圍;
(2)在(1)的條件下,若方程f(x)+a+1=0在x∈(0,2]上有且只有一個實根,求a的取值范圍.
【答案】解:(1)∵f(x)=(x﹣1)2+a(lnx﹣x+1),
∴f′(x)=2(x﹣1)+a(
﹣1)=(x﹣1)(2﹣
);
且f(1)=0+a(ln1﹣1+1)=0,
①當a≤2時,f′(x)>0在(1,+∞)上恒成立,
故f(x)>=f(1)=0;
②當a>2時,
可知f(x)在(1,
)上是減函數,在(
,+∞)上是增函數;
故f(
)<0;
綜上所述,a≤2;
(2)f(x)+a+1=(x﹣1)2+a(lnx﹣x+1)+a+1,
當a<0時,f(x)+a+1在(0,1]上是減函數,在(1,2]上是增函數;
且
((x﹣1)2+a(lnx﹣x+1)+a+1)=+∞,
f(1)+a+1=a+1,f(2)+a+1=1+a(ln2﹣1)+a+1;
故a+1=0或1+a(ln2﹣1)+a+1<0;
故a=﹣1或a<﹣
;
當a=0時,f(x)+a+1=(x﹣1)2+1>0,故不成立;
當0<a<2時,
f(x)+a+1在(0,
]上是增函數,在(
,1]上是減函數,在(1,2]上是增函數;
且
((x﹣1)2+a(lnx﹣x+1)+a+1)=﹣∞,
f(1)+a+1=a+1>0,
故方程f(x)+a+1=0在x∈(0,2]上有且只有一個實根,
當a=2時,f(x)+a+1=(x﹣1)2+2(lnx﹣x+1)+2+1=(x﹣1)2+2(lnx﹣x+1)+3,
故f(x)在(0,2]上是增函數;
且
((x﹣1)2+2(lnx﹣x+1)+3)=﹣∞,f(1)=3>0;
故方程f(x)+a+1=0在x∈(0,2]上有且只有一個實根,
綜上所述,a<﹣
或a=﹣1或0<a≤2.
【解析】(1)求導f′(x)=2(x﹣1)+a(
﹣1)=(x﹣1)(2﹣
),且f(1)=0+a(ln1﹣1+1)=0,從而討論以確定函數的單調性,從而解得;
(2)化簡f(x)+a+1=(x﹣1)2+a(lnx﹣x+1)+a+1,從而討論以確定函數的單調性,從而解得.
【考點精析】解答此題的關鍵在于理解函數的最大(小)值與導數的相關知識,掌握求函數
在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數學 來源: 題型:
【題目】圓x2+y2+2x﹣4y﹣6=0的圓心和半徑分別是( )
A.(﹣1,﹣2),11
B.(﹣1,2),11
C.(﹣1,﹣2), ![]()
D.(﹣1,2), ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知可導函數y=f(x)在點P(x0 , f(x0))處切線為l:y=g(x)(如圖),設F(x)=f(x)﹣g(x),則( )![]()
A.F′(x0)=0,x=x0是F(x)的極大值點
B.F′(x0)=0,x=x0是F(x)的極小值點
C.F′(x0)≠0,x=x0不是F(x)的極值點
D.F′(x0)≠0,x=x0是F(x)的極值點
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1 , 底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別是A1B1、A1A的中點.
(1)求
的長;
(2)求cos(![]()
)的值;
(3)求證A1B⊥C1M.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Acos(ωx+α)(A>0,ω>0,0<α<π)為奇函數,該函數的部分圖象如圖所示,△EFG是邊長為2的等邊三角形,則f(1)的值為 . ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD的底面為菱形,∠BCD=120°,AB=PC=2,AP=BP=
. ![]()
(1)求證:AB⊥PC;
(2)求二面角B一PC﹣D的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點,A(1,1),B(2,0),|
|=1.
(1)求
與
夾角;
(2)若
與
垂直,求點C的坐標;
(3)求|
+
+
|的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com