【題目】已知
=(
sinx,m+cosx),
=(cosx,﹣m+cosx),且f(x)= ![]()
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈
時,f(x)的最小值是﹣4,求此時函數(shù)f(x)的最大值,并求出相應(yīng)的x的值.
【答案】
(1)
解:f(x)=
=(
sinx,m+cosx)(cosx,﹣m+cosx),
即
,
(2)
解:∵f(x)=
,由
,可得
,
∴
,∴f(x)的最小值為
,∴m=±2,
∴fmax(x)=1+
﹣4=﹣
,此時,
,即
.
【解析】(1)f(x)=
=(
sinx,m+cosx)(cosx,﹣m+cosx)=
.(2)函數(shù)f(x)=
,根據(jù)
,求得
,得到
,從而得到函數(shù)f(x)的最大值 及相應(yīng)的x的值.
【考點(diǎn)精析】本題主要考查了三角函數(shù)的最值的相關(guān)知識點(diǎn),需要掌握函數(shù)
,當(dāng)
時,取得最小值為
;當(dāng)
時,取得最大值為
,則
,
,
才能正確解答此題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , a1=1,且(n+1)an=2Sn(n∈N*),數(shù)列{bn}滿足
,
,對任意n∈N* , 都有
.
(1)求數(shù)列{an}、{bn}的通項公式;
(2)令Tn=a1b1+a2b2+…+anbn . 若對任意的n∈N* , 不等式λnTn+2bnSn<2(λn+3bn)恒成立,試求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,矩形ABCD的一邊AB在x軸上,另一邊CD在x軸上方,且AB=8,BC=6,其中A(﹣4,0)、B(4,0). ![]()
(1)若A、B為橢圓的焦點(diǎn),且橢圓經(jīng)過C、D兩點(diǎn),求該橢圓的方程;
(2)若A、B為雙曲線的焦點(diǎn),且雙曲線經(jīng)過C、D兩點(diǎn),求雙曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①函數(shù)
是奇函數(shù);
②存在實(shí)數(shù)α,使得sinα+cosα=
;
③若α,β是第一象限角且α<β,則tanα<tanβ;
④
是函數(shù)
的一條對稱軸方程;
⑤函數(shù)
的圖象關(guān)于點(diǎn)
成中心對稱圖形.
其中命題正確的是(填序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)平面向量
=(cosx,sinx),
=(cosx+2
,sinx),
=(sinα,cosα),x∈R.
(1)若
,求cos(2x+2α)的值;
(2)若α=0,求函數(shù)f(x)=
的最大值,并求出相應(yīng)的x值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的不等式ax2+bx+c<0的解集為{x|x<﹣2或x>﹣
},則關(guān)于x的不等式ax2﹣bx+c>0的解集為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了得到函數(shù)y=2sin(
),x∈R的圖象只需把函數(shù)y=2sinx,x∈R的圖象上所有的點(diǎn)( )
A.向右平移
個單位長度,再把所有各點(diǎn)的橫坐標(biāo)縮短到原來的
倍
B.向左平移
個單位長度,再把所有各點(diǎn)的橫坐標(biāo)伸長到原來的3倍
C.向左平移
個單位長度,再把所有各點(diǎn)的橫坐標(biāo)縮短到原來的
倍
D.向右平移
個單位長度,再把所有各點(diǎn)的橫坐標(biāo)伸長到原來的3倍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列{an}的前n項和為Sn , 且2Sn=(an﹣1)(an+2),
(1)求數(shù)列{an}的通項公式
(2)設(shè)數(shù)列{
}的前n項和為Tn , 試比較Tn與
的大小.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com