【題目】(本小題滿分12分,第(1)問 4 分,第(2)問 8 分)
某闖關游戲規則是:先后擲兩枚骰子,將此實驗重復
輪,第
輪的點數分別記為
,如果點數滿足
,則認為第
輪闖關成功,否則進行下一輪投擲,直到闖關成功,游戲結束。
求第一輪闖關成功的概率;
如果游戲只進行到第四輪,第四輪后不論游戲成功與否,都終止游戲,記進行的輪數為隨機變量
,求
的分布列和數學期望。
科目:高中數學 來源: 題型:
【題目】如右圖所示,設E、F、E1、F1分別是長方體ABCD-A1B1C1D1的棱AB、CD、A1B1、C1D1的中點,則平面EFD1A1與平面BCF1E1的位置關系是 ( )
![]()
A. 平行 B. 相交 C. 異面 D. 不確定
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區發生里氏8.0級特大地震.地震專家對發生的余震進行了監測,記錄的部分數據如下表:
強度(J) | 1.6×1019 | 3.2×1019 | 4.5×1019 | 6.4×1019 |
震級(里氏) | 5.0 | 5.2 | 5.3 | 5.4 |
注:地震強度是指地震時釋放的能量.
地震強度(x)和震級(y)的模擬函數關系可以選用y=alg x+b(其中a,b為常數).利用散點圖(如圖)可知a的值等于________.(取lg 2=0.3進行計算)
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某農科所對冬季晝夜溫差大小與某反季節大豆新品種發芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發芽數,得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發芽數 | 23 | 25 | 30 | 26 | 16 |
該農科所確定的研究方案是:先從這五組數據中選取2組,用剩下的3組數據求線性回歸方程,再對被選取的2組數據進行檢驗.
(1)求選取的2組數據恰好是不相鄰2天數據的概率;
(2)若選取的是12月1日與12月5日的兩組數據,請根據12月2日至12月4日的數據,求出y關于x的線性回歸方程
;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方形ABCD-A1B1C1D1中,E,F,M分別是棱B1C1,BB1,C1D1的中點,是否存在過點E,M且與平面A1FC平行的平面?若存在,請作出并證明;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司試銷一種成本單價為500元的新產品,規定試銷時銷售單價不低于成本單價,又不高于800元.經試銷調查,發現銷售量y(件)與銷售單價x(元)之間的關系可近似看作一次函數y=kx+b(k≠0),函數圖象如圖所示.
![]()
(1)根據圖象,求一次函數y=kx+b(k≠0)的表達式;
(2)設公司獲得的毛利潤(毛利潤=銷售總價-成本總價)為S元.試問銷售單價定為多少時,該公司可獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2016·桂林高二檢測)如圖所示,在四邊形ABCD中,AB=AD=CD=1,BD=
,BD⊥CD,將四邊形ABCD沿對角線BD折成四面體A′-BCD,使平面A′BD⊥平面BCD,則下列結論正確的是________.
![]()
(1)A′C⊥BD.(2)∠BA′C=90°.
(3)CA′與平面A′BD所成的角為30°.
(4)四面體A′-BCD的體積為
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com