【題目】2019年4月20日,福建省人民政府公布了“3+1+2”新高考方案,方案中“2”指的是在思想政治、地理、化學、生物4門中選擇2門.“2”中記入高考總分的單科成績是由原始分轉化得到的等級分,學科高考原始分在全省的排名越靠前,等級分越高小明同學是2018級的高一學生.已確定了必選地理且不選政治,為確定另選一科,小明收集并整理了化學與生物近10大聯考的成績百分比排名數據x(如x=19的含義是指在該次考試中,成績高于小明的考生占參加該次考試的考生數的19%)繪制莖葉圖如下.
![]()
(1)分別計算化學、生物兩個學科10次聯考的百分比排名的平均數;中位數;
(2)根據已學的統計知識,并結合上面的數據,幫助小明作出選擇.并說明理由.
科目:高中數學 來源: 題型:
【題目】現從某醫院中隨機抽取了七位醫護人員的關愛患者考核分數(患者考核:10分制),用相關的特征量
表示;醫護專業知識考核分數(試卷考試:100分制),用相關的特征量
表示,數據如下表:
(Ⅰ)求
關于
的線性回歸方程(計算結果精確到0.01);
(Ⅱ)利用(I)中的線性回歸方程,分析醫護專業考核分數的變化對關愛患者考核分數的影響,并估計某醫護人員的醫護專業知識考核分數為95分時,他的關愛患者考核分數(精確到0.1);
![]()
(Ⅲ)現要從醫護專業知識考核分數95分以下的醫護人員中選派2人參加組建的“九寨溝災后醫護小分隊”培訓,求這兩人中至少有一人考核分數在90分以下的概率.
附:回歸方程
中斜率和截距的最小二乘法估計公式分別為![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠為檢驗車間一生產線工作是否正常,現從生產線中隨機抽取一批零件樣本,測量它們的尺寸(單位:
)并繪成頻率分布直方圖,如圖所示.根據長期生產經驗,可以認為這條生產線正常狀態下生產的零件尺寸
服從正態分布
,其中
近似為零件樣本平均數
,
近似為零件樣本方差
.
(1)求這批零件樣本的
和
的值(同一組中的數據用該組區間的中點值作代表);
(2)假設生產狀態正常,求
;
(3)若從生產線中任取一零件,測量其尺寸為
,根據
原則判斷該生產線是否正常?
附:
;若
,則
,
,
.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】手機支付也稱為移動支付
,是指允許移動用戶使用其移動終端(通常是手機)對所消費的商品或服務進行賬務支付的一種服務方式.繼卡類支付、網絡支付后,手機支付儼然成為新寵.某金融機構為了了解移動支付在大眾中的熟知度,對15-65歲的人群隨機抽樣調查,調查的問題是“你會使用移動支付嗎?”其中,回答“會”的共有100個人,把這100個人按照年齡分成5組,然后繪制成如圖所示的頻率分布表和頻率分布直方圖.
組數 | 第l組 | 第2組 | 第3組 | 第4組 | 第5組 |
分組 |
|
|
|
|
|
頻數 | 20 | 36 | 30 | 10 | 4 |
![]()
(1)求
;
(2)從第l,3,4組中用分層抽樣的方法抽取6人,求第l,3,4組抽取的人數:
(3)在(2)抽取的6人中再隨機抽取2人,求所抽取的2人來自同一個組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
.
![]()
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,
,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年春季,世界各地相繼出現流感疫情,這已經成為全球性的公共衛生問題.為了考察某種流感疫苗的效果,某實驗室隨機抽取100只健康小鼠進行試驗,得到如下列聯表:
感染 | 未感染 | 總計 | |
注射 | 10 | 40 | 50 |
未注射 | 20 | 30 | 50 |
總計 | 30 | 70 | 100 |
參照附表,在犯錯誤的概率最多不超過__________的前提下,可認為“注射疫苗”與“感染流感”有關系.
(參考公式:
.)
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com