【題目】在四棱錐
中,側(cè)面PAD是等邊三角形,且平面
平面ABCD,
,
.
![]()
(1)AD上是否存在一點(diǎn)M,使得平面
平面ABCD;若存在,請(qǐng)證明,若不存在,請(qǐng)說(shuō)明理由;
(2)若
的面積為
,求四棱錐
的體積.
【答案】(1) 存在一點(diǎn)M為
中點(diǎn),使得平面
平面ABCD,證明見(jiàn)詳解;(2)
.
【解析】
(1)取
中點(diǎn)為
,根據(jù)
平面
,由線面垂直推證面面垂直即可;
(2)根據(jù)
的面積求得各棱長(zhǎng)度,即可由體積公式求得結(jié)果.
(1)存在點(diǎn)
為
中點(diǎn),使得平面
平面ABCD,證明如下:
取
中點(diǎn)為
,連接
,如下圖所示:
![]()
因?yàn)?/span>
為等邊三角形,
為
中點(diǎn),
故可得
;
又因?yàn)槠矫?/span>
平面ABCD,且交線為
,
又因?yàn)?/span>
平面
,
,
故可得
平面
,又
平面
,
故可得平面
平面
,即證.
(2)不妨設(shè)
,
故可得
,
由(1)可知
為直角三角形,
且
,
,
故可得
;
在
中,因?yàn)?/span>
,
則
,則
,
故可得其面積
,
解得
;
故可得![]()
又由(1)可知,
平面
,
故
.
故四棱錐
的體積為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一種賽車跑道類似“梨形”曲線,由圓弧
和線段AB,CD四部分組成,在極坐標(biāo)系Ox中,A(2,
),B(1,
),C(1,
),D(2,
),弧
所在圓的圓心分別是(0,0),(2,0),曲線M1是弧
,曲線M2是弧
.
![]()
(1)分別寫(xiě)出M1,M2的極坐標(biāo)方程:
(2)點(diǎn)E,F位于曲線M2上,且
,求△EOF面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐P﹣ABCD中,AB∥CD,AB⊥BC,AB=BC=1,PA=CD=2,PA⊥底面ABCD,E在PB上.
![]()
(1)證明:AC⊥PD;
(2)若PE=2BE,求三棱錐P﹣ACE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)為提高服務(wù)質(zhì)量,隨機(jī)調(diào)查了60名男顧客和80名女顧客,每位顧客均對(duì)該商場(chǎng)的服務(wù)給出滿意或不滿意的評(píng)價(jià),得到下面不完整的列聯(lián)表:
滿意 | 不滿意 | 合計(jì) | |
男顧客 | 50 | ||
女顧客 | 50 | ||
合計(jì) |
(1)根據(jù)已知條件將列聯(lián)表補(bǔ)充完整;
(2)能否有
的把握認(rèn)為男、女顧客對(duì)該商場(chǎng)服務(wù)的評(píng)價(jià)有差異?
附:![]()
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次乙肝普查.為此需要抽驗(yàn)669人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.
方案一:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)669次.
方案二:按
個(gè)人一組進(jìn)行隨機(jī)分組,把從每組
個(gè)人抽來(lái)的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這
個(gè)人的血就只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn)
次);否則,若呈陽(yáng)性,則需對(duì)這
個(gè)人的血樣再分別進(jìn)行一次化驗(yàn),這時(shí)該組
個(gè)人的血總共需要化驗(yàn)
次.
假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽(yáng)性的概率為
,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.
(1)設(shè)方案二中,某組
個(gè)人中每個(gè)人的血化驗(yàn)次數(shù)為
,求
的分布列.
(2)設(shè)
,試比較方案二中,
分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案一,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)平面中,△ABC的兩個(gè)頂點(diǎn)A、B的坐標(biāo)分別為A(﹣1,0),B (1,0),平面內(nèi)兩點(diǎn)G、M同時(shí)滿足下列條件:(1)
;(2)
;(3)
∥
,則△ABC的頂點(diǎn)C的軌跡方程為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)P(x,y)滿足|x﹣1|+|y﹣a|=1,O為坐標(biāo)原點(diǎn),若
的最大值的取值范圍為
,則實(shí)數(shù)a的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
分別為橢圓
的左、右焦點(diǎn),
為該橢圓的一條垂直于
軸的動(dòng)弦,直線
與
軸交于點(diǎn)
,直線
與直線
的交點(diǎn)為
.
(1)證明:點(diǎn)
恒在橢圓
上.
(2)設(shè)直線
與橢圓
只有一個(gè)公共點(diǎn)
,直線
與直線
相交于點(diǎn)
,在平面內(nèi)是否存在定點(diǎn)
,使得
恒成立?若存在,求出該點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E:
,過(guò)右焦點(diǎn)F的直線l與橢圓E交于A,B兩點(diǎn)(A,B兩點(diǎn)不在x軸上),橢圓E在A,B兩點(diǎn)處的切線交于P,點(diǎn)P在定直線
上.
(1)記點(diǎn)
,求過(guò)點(diǎn)
與橢圓E相切的直線方程;
(2)以
為直徑的圓過(guò)點(diǎn)F,求
面積的最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com