【題目】如圖,有一種賽車跑道類似“梨形”曲線,由圓弧
和線段AB,CD四部分組成,在極坐標(biāo)系Ox中,A(2,
),B(1,
),C(1,
),D(2,
),弧
所在圓的圓心分別是(0,0),(2,0),曲線M1是弧
,曲線M2是弧
.
![]()
(1)分別寫出M1,M2的極坐標(biāo)方程:
(2)點E,F位于曲線M2上,且
,求△EOF面積的取值范圍.
【答案】(1)M1,M2的極坐標(biāo)方程為
和ρ=4cosθ(
).(2)
.
【解析】
(1)利用圓的極坐標(biāo)方程的求法求解.
(2)設(shè)點E(ρ1,α),點F(
),(
),得到ρ1=4cosα,
,然后代入
,利用三角恒等變換化簡求解.
(1)由題意可知:M1的極坐標(biāo)方程為
.
記圓弧AD所在圓的圓心(2,0),
因為
,
所以極點O在圓弧AD上.
設(shè)P(ρ,θ)為M2上任意一點,則ρ=4cosθ(
).
所以:M1,M2的極坐標(biāo)方程為
和ρ=4cosθ(
).
(2)設(shè)點E(ρ1,α),點F(
),(
),
所以ρ1=4cosα,
.
所以
.
由于
,所以
.
故
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對
四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學(xué)對這四件參賽作品預(yù)測如下:
甲說:“是
或
作品獲得一等獎”; 乙說:“
作品獲得一等獎”;
丙說:“
兩件作品未獲得一等獎”; 丁說:“是
作品獲得一等獎”.
評獎揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是
軸上的動點(異于原點
),點
在圓
上,且
.設(shè)線段
的中點為
,當(dāng)點
移動時,記點
的軌跡為曲線
.
![]()
(1)求曲線
的方程;
(2)當(dāng)直線
與圓
相切于點
,且點
在第一象限.
(ⅰ)求直線
的斜率;
(ⅱ)直線
平行
,交曲線
于不同的兩點
、
.線段
的中點為
,直線
與曲線
交于兩點
、
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=(sinx+cosx)2
cos(2x+π).
(1)求函數(shù)f(x)的最小正周期;
(2)已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若
,且a=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù)).設(shè)直線
與
的交點為
,當(dāng)
變化時的點
的軌跡為曲線
.
(1)求出曲線
的普通方程;
(2)以坐標(biāo)原點為極點,
軸正半軸為極軸建立極坐標(biāo)系,設(shè)射線
的極坐標(biāo)方程為
且
,點
是射線
與曲線
的交點,求點
的極徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】蜂巢是由工蜂分泌蜂蠟建成的.從正面看,蜂巢口是由許多正六邊形的中空柱狀體連接而成,中空柱狀體的底部是由三個全等的菱形面構(gòu)成.如圖,在正六棱柱
的三個頂點
處分別用平面
,平面
,平面
截掉三個相等的三棱錐
,
,
,平面
,平面
,平面
交于點
,就形成了蜂巢的結(jié)構(gòu),如下圖(4)所示,
![]()
瑞士數(shù)學(xué)家克尼格利用微積分的方法證明了蜂巢的這種結(jié)構(gòu)是在相同容積下所用材料最省的,英國數(shù)學(xué)家麥克勞林通過計算得到菱形的一個內(nèi)角為
,即
.以下三個結(jié)論①
;② ![]()
![]()
;③
四點共面,正確命題的個數(shù)為______個;若
,
,
,則此蜂巢的表面積為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】區(qū)塊鏈技術(shù)被認(rèn)為是繼蒸汽機(jī)、電力、互聯(lián)網(wǎng)之后,下一代顛覆性的核心技術(shù)區(qū)塊鏈作為構(gòu)造信任的機(jī)器,將可能徹底改變整個人類社會價值傳遞的方式,2015年至2019年五年期間,中國的區(qū)塊鏈企業(yè)數(shù)量逐年增長,居世界前列現(xiàn)收集我國近5年區(qū)塊鏈企業(yè)總數(shù)量相關(guān)數(shù)據(jù),如表
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
編號 | 1 | 2 | 3 | 4 | 5 |
企業(yè)總數(shù)量y(單位:千個) | 2.156 | 3.727 | 8.305 | 24.279 | 36.224 |
注:參考數(shù)據(jù)
(其中z=lny).
附:樣本(xi,yi)(i=1,2,…,n)的最小二乘法估計公式為![]()
(1)根據(jù)表中數(shù)據(jù)判斷,y=a+bx與y=cedx(其中e=2.71828…,為自然對數(shù)的底數(shù)),哪一個回歸方程類型適宜預(yù)測未來幾年我國區(qū)塊鏈企業(yè)總數(shù)量?(給出結(jié)果即可,不必說明理由)
(2)根據(jù)(1)的結(jié)果,求y關(guān)于x的回歸方程(結(jié)果精確到小數(shù)點后第三位);
(3)為了促進(jìn)公司間的合作與發(fā)展,區(qū)塊鏈聯(lián)合總部決定進(jìn)行一次信息化技術(shù)比賽,邀請甲、乙、丙三家區(qū)塊鏈公司參賽比賽規(guī)則如下:①每場比賽有兩個公司參加,并決出勝負(fù);②每場比賽獲勝的公司與未參加此場比賽的公司進(jìn)行下一場的比賽;③在比賽中,若有一個公司首先獲勝兩場,則本次比賽結(jié)束,該公司就獲得此次信息化比賽的“優(yōu)勝公司”,已知在每場比賽中,甲勝乙的概率為
,甲勝丙的概率為
,乙勝丙的概率為
,請通過計算說明,哪兩個公司進(jìn)行首場比賽時,甲公司獲得“優(yōu)勝公司”的概率最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐
中,側(cè)面PAD是等邊三角形,且平面
平面ABCD,
,
.
![]()
(1)AD上是否存在一點M,使得平面
平面ABCD;若存在,請證明,若不存在,請說明理由;
(2)若
的面積為
,求四棱錐
的體積.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com