設(shè)
是同時(shí)符合以下性質(zhì)的函數(shù)
組成的集合:
①
,都有
;②
在
上是減函數(shù).
(1)判斷函數(shù)
和
(
)是否屬于集合
,并簡要說明理由;
(2)把(1)中你認(rèn)為是集合
中的一個(gè)函數(shù)記為
,若不等式
對(duì)任意的
總成立,求實(shí)數(shù)
的取值范圍.
(1)
,
;(2)
.
解析試題分析:(1)對(duì)
和
分別判斷其單調(diào)性,然后再求出其值域即可得到答案;(2)
對(duì)任意的
總成立,則可得
,問題轉(zhuǎn)化為求函數(shù)
的最大值,通過判斷其單調(diào)性即可得到最大值.
試題解析:(1)∵
在
時(shí)是減函數(shù),
的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/12/c/116mc3.png" style="vertical-align:middle;" />,
∴
不在集合
中 3分
又∵
時(shí),
,
,∴
, 5分
且
在
上是減函數(shù),
∴
在集合
中 7分
(2)
,
, 9分
在
上是減函數(shù),
, 11分
又由已知
對(duì)任意的
總成立,
∴
,因此所求的實(shí)數(shù)
的取值范圍是
16分
考點(diǎn):函數(shù)的單調(diào)性、值域,不等式恒成立問題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
恒過定點(diǎn) (3,2).
(1)求實(shí)數(shù)
;
(2)在(1)的條件下,將函數(shù)
的圖象向下平移1個(gè)單位,再向左平移
個(gè)單位后得到函數(shù)
,設(shè)函數(shù)
的反函數(shù)為
,求
的解析式;
(3)對(duì)于定義在[1,9]的函數(shù)
,若在其定義域內(nèi),不等式
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(其中
)的圖象如圖所示.![]()
(1) 求函數(shù)
的解析式;
(2) 設(shè)函數(shù)
,且
,求
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
對(duì)任意
滿足
,
,若當(dāng)
時(shí),
(
且
),且
.
(1)求實(shí)數(shù)
的值;
(2)求函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,![]()
.
(Ⅰ)若
,求函數(shù)
在區(qū)間
上的最值;
(Ⅱ)若
恒成立,求
的取值范圍. (注:
是自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
).
(1)若
的定義域和值域均是
,求實(shí)數(shù)
的值;
(2)若對(duì)任意的
,![]()
,總有
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對(duì)于函數(shù)
,若在定義域內(nèi)存在實(shí)數(shù)
,滿足
,則稱
為“局部奇函數(shù)”.
(Ⅰ)已知二次函數(shù)
,試判斷
是否為“局部奇函數(shù)”?并說明理由;
(Ⅱ)若
是定義在區(qū)間
上的“局部奇函數(shù)”,求實(shí)數(shù)
的取值范圍;
(Ⅲ)若
為定義域
上的“局部奇函數(shù)”,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com