【題目】已知四棱錐
中,
底面
,
,
,
,
.
![]()
(1)當
變化時,點
到平面
的距離是否為定值?若是,請求出該定值;若不是,請說明理由;
(2)當直線
與平面
所成的角為45°時,求二面角
的余弦值.
科目:高中數學 來源: 題型:
【題目】如圖,已知點
為拋物線
的焦點,過點
的直線交拋物線于
、
兩點,點
在拋物線上,使得
的重心
在
軸上,直線
交
軸于點
,且
在點
的右側.記
、
的面積分別
、
.
![]()
(1)求
的值及拋物線的方程;
(2)求
的最小值及此時點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:極坐標與參數方程]
在直角坐標系
中,曲線
的參數方程為
(
是參數),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線
的極坐標方程和曲線
的直角坐標方程;
(2)若射線
與曲線
交于
,
兩點,與曲線
交于
,
兩點,求
取最大值時
的值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:圓心到直線的距離與圓的半徑之比為直線關于圓的距離比
.
(1)設圓
求過
(2,0)的直線關于圓
的距離比
的直線方程;
(2)若圓
與
軸相切于點
(0,3)且直線
=
關于圓
的距離比
,求此圓的
的方程;
(3)是否存在點
,使過
的任意兩條互相垂直的直線分別關于相應兩圓
的距離比始終相等?若存在,求出相應的點
點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐
中,
平面
,
,
.
,
,
,
是
的中點.
![]()
(Ⅰ)證明:
⊥平面
;
(Ⅱ)若二面角
的余弦值是
,求
的值;
(Ⅲ)若
,在線段
上是否存在一點
,使得
⊥
. 若存在,確定
點的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著城市地鐵建設的持續推進,市民的出行也越來越便利.根據大數據統計,某條地鐵線路運行時,發車時間間隔t(單位:分鐘)滿足:4≤t≤15,
N,平均每趟地鐵的載客人數p(t)(單位:人)與發車時間間隔t近似地滿足下列函數關系:
,其中
.
(1)若平均每趟地鐵的載客人數不超過1500人,試求發車時間間隔t的值.
(2)若平均每趟地鐵每分鐘的凈收益為
(單位:元),問當發車時間間隔t為多少時,平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com