【題目】平面直角坐標(biāo)系中,在x軸的上方作半徑為1的圓Γ,與x軸相切于坐標(biāo)原點(diǎn)O.平行于x軸的直線l1與y軸交點(diǎn)的縱坐標(biāo)為-1,A(x,y)是圓Γ外一動(dòng)點(diǎn),A與圓Γ上的點(diǎn)的最小距離比A到l1的距離小1.
(Ⅰ)求動(dòng)點(diǎn)A的軌跡方程;
(Ⅱ)設(shè)l2是圓Γ平行于x軸的切線,試探究在y軸上是否存在一定點(diǎn)B,使得以AB為直徑的圓截直線l2所得的弦長(zhǎng)不變.
![]()
【答案】(I)
;(II)存在
滿足題意.
【解析】
(Ⅰ)由題意,圓Γ上距
距離最小的點(diǎn)在
上,于是依題意知
的長(zhǎng)度等于
到
的距離,即可求解;
(Ⅱ)假設(shè)存在這樣的點(diǎn)
,設(shè)其坐標(biāo)為
,以
為直徑的圓的圓心為
,過
作
的垂線,垂足為
,則
點(diǎn)坐標(biāo)為
,于是
,
,根據(jù)弦長(zhǎng)公式建立關(guān)系,待定系數(shù)法,即可求解
的值,可得其坐標(biāo)
解:(Ⅰ)設(shè)圓Γ的圓心為O1,顯然圓Γ上距A距離最小的點(diǎn)在AO1上,
于是依題意知AO1的長(zhǎng)度等于A到l1的距離.顯然A不能在l1的下方,
若不然A到l1的距離小于AO1的長(zhǎng)度,
故有
,
即y=
x2(x≠0).
![]()
(Ⅱ)若存在這樣的點(diǎn)B,設(shè)其坐標(biāo)為(0,t),
以AB為直徑的圓的圓心為C,過C作l2的垂線,垂足為D.
則C點(diǎn)坐標(biāo)為(
),于是CD=
,
AB=![]()
設(shè)所截弦長(zhǎng)為l,
則
=
CD2=![]()
于是l2=(12-4t)y+8t-16,
弦長(zhǎng)不變即l不隨y的變化而變化,
故12-4t=0,即t=3.
即存在點(diǎn)B(0,3),滿足以AB為直徑的圓截直線l2所得的弦長(zhǎng)不變.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
(a>b>0)上一點(diǎn)與它的左、右兩個(gè)焦點(diǎn)F1 , F2的距離之和為2
,且它的離心率與雙曲線x2﹣y2=2的離心率互為倒數(shù).
(1)求橢圓的方程;
(2)如圖,點(diǎn)A為橢圓上一動(dòng)點(diǎn)(非長(zhǎng)軸端點(diǎn)),AF1的延長(zhǎng)線與橢圓交于點(diǎn)B,AO的延長(zhǎng)線與橢圓交于點(diǎn)C.
①當(dāng)直線AB的斜率存在時(shí),求證:直線AB與BC的斜率之積為定值;
②求△ABC面積的最大值,并求此時(shí)直線AB的方程.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是偶函數(shù),若在(0,+∞)為增函數(shù),f(1)=0,則
<0的解集為( )
A. (
,
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知坐標(biāo)平面上點(diǎn)
與兩個(gè)定點(diǎn)
,
的距離之比等于5.
(1)求點(diǎn)
的軌跡方程,并說明軌跡是什么圖形;
(2)記(1)中的軌跡為
,過點(diǎn)
的直線
被
所截得的線段的長(zhǎng)為 8,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義
為n個(gè)正數(shù)p1 , p2 , …,pn的“均倒數(shù)”,若已知數(shù)列{an},的前n項(xiàng)的“均倒數(shù)”為
,又bn=
,則
+
+…+
=( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
,
為自然對(duì)數(shù)的底數(shù)),且曲線
在點(diǎn)
處的切線平行于
軸.
(1)求
的值;
(2)求函數(shù)
的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(a>0,a≠1)是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并給出證明;
(3)當(dāng)x∈(n,a﹣2)時(shí),函數(shù)f(x)的值域是(1,+∞),求實(shí)數(shù)a與n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓
的方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長(zhǎng)度,直線
的極坐標(biāo)方程為![]()
(1)當(dāng)
時(shí),判斷直線
與圓
的關(guān)系;
(2)當(dāng)
上有且只有一點(diǎn)到直線
的距離等于
時(shí),求
上到直線
距離為
的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A是函數(shù)y=lg(20﹣8x﹣x2)的定義域,集合B是不等式x2﹣2x+1﹣a2≥0(a>0)的解集,p:x∈A,q:x∈B.
(1)若A∩B=,求實(shí)數(shù)a的取值范圍;
(2)若¬p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com