【題目】如圖,在三棱錐
中,
與
均為邊長是2的等邊三角形,平面
平面CBE,點O是BE的中點。
![]()
(1)求證:
;
(2)求直線AB與平面ACE所成角的正弦值。
科目:高中數學 來源: 題型:
【題目】提升城市道路通行能力,可為市民提供更多出行便利.我校某研究性學習小組對成都市一中心路段(限行速度為
千米/小時)的擁堵情況進行調查統計,通過數據分析發現:該路段的車流速度
(輛/千米)與車流密度
(千米/小時)之間存在如下關系:如果車流密度不超過
該路段暢通無阻(車流速度為限行速度);當車流密度在
時,車流速度是車流密度的一次函數;車流密度一旦達到
該路段交通完全癱瘓(車流速度為零).
(1)求
關于
的函數![]()
(2)已知車流量(單位時間內通過的車輛數)等于車流密度與車流速度的乘積,求此路段車流量的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設等比數列
的公比為
,其前
項和為
,前
項之積為
,并且滿足條件:
,
,
,下列結論中正確的是( )
A.
B. ![]()
C.
是數列
中的最大值 D. 數列
無最小值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種蔬菜從1月1日起開始上市,通過市場調查,得到該蔬菜種植成本
(單位:元/
)與上市時間
(單位:10天)的數據如下表:
時間 | 5 | 11 | 25 |
種植成本 | 15 | 10.8 | 15 |
(1)根據上表數據,從下列函數:
,
,
,
中(其中
),選取一個合適的函數模型描述該蔬菜種植成本
與上市時間
的變化關系;
(2)利用你選取的函數模型,求該蔬菜種植成本最低時的上市時間及最低種植成本.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業有甲、乙兩套設備生產同一種產品,為了檢測兩套設備的生產質量情況,隨機從兩套設備生產的大量產品中各抽取了50件產品作為樣本,檢測一項質量指標值,若該項質量指標值落在
內,則為合格品,否則為不合格品. 表1是甲套設備的樣本的頻數分布表,圖1是乙套設備的樣本的頻率分布直方圖.
表1:甲套設備的樣本的頻數分布表
質量指標值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
頻數 | 1 | 4 | 19 | 20 | 5 | 1 |
圖1:乙套設備的樣本的頻率分布直方圖
![]()
(1)填寫下面列聯表,并根據列聯表判斷是否有90%的把握認為該企業生產的這種產品的質量指標值與甲、乙兩套設備的選擇有關;