【題目】某商場進行購物摸獎活動,規則是:在一個封閉的紙箱中裝有標號分別為1,2,3,4,5,6的六個小球,每次摸獎需要同時取出兩個球,每位顧客最多有兩次摸獎機會,并規定:若第一次取出的兩球號碼連號,則中獎,摸獎結束;若第一次未中獎,則將這兩個小球放回后進行第二次摸球,若與第一次取出的兩個小球號碼相同,則為中獎,按照這樣的規則摸獎,中獎的概率為( )
A.
B.
C.
D.![]()
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在極坐標系中,曲線
的極坐標方程為
,以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,直線
的參數方程為
(t為參數).
(1)寫出曲線
的參數方程和直線
的普通方程;
(2)已知點
是曲線
上一點,,求點
到直線
的最小距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,曲線
:
經過伸縮變換
后得到曲線
.以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)求出曲線
、
的參數方程;
(Ⅱ)若
、
分別是曲線
、
上的動點,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一只藥用昆蟲的產卵數y與一定范圍內的溫度x有關, 現收集了該種藥用昆蟲的6組觀測數據如下表:
溫度x/C | 21 | 23 | 24 | 27 | 29 | 32 |
產卵數y/個 | 6 | 11 | 20 | 27 | 57 | 77 |
經計算得:
,
,
,
,
,線性回歸模型的殘差平方和
,e8.0605≈3167,其中xi, yi分別為觀測數據中的溫度和產卵數,i=1, 2, 3, 4, 5, 6.
(Ⅰ)若用線性回歸模型,求y關于x的回歸方程
=
x+
(精確到0.1);
(Ⅱ)若用非線性回歸模型求得y關于x的回歸方程為
=0.06e0.2303x,且相關指數R2=0.9522.
( i )試與(Ⅰ)中的回歸模型相比,用R2說明哪種模型的擬合效果更好.
( ii )用擬合效果好的模型預測溫度為35C時該種藥用昆蟲的產卵數(結果取整數).
附:一組數據(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線
=
x+
的斜率和截距的最小二乘估計為
=![]()
;相關指數R2=
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中正確的個數①“
,
”的否定是“
,
”;②用相關指數
可以刻畫回歸的擬合效果,
值越小說明模型的擬合效果越好;③命題“若
,則
”的逆命題為真命題;④若![]()
的解集為
,則
.
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:
)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區間
,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:
![]()
以最高氣溫位于各區間的頻率估計最高氣溫位于該區間的概率.
(1)求六月份這種酸奶一天的需求量
(單位:瓶)的分布列;
(2)設六月份一天銷售這種酸奶的利潤為
(單位:元),當六月份這種酸奶一天的進貨量
(單位:瓶)為多少時,
的數學期望達到最大值?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐
中,PA⊥平面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.證明:
(1)CD⊥AE;
(2)PD⊥平面ABE.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數
,若
,則稱
為
的“不動點”,若
,則稱
為
的“穩定點”,函數
的“不動點”和“穩定點”的集合分別記為
和
,即
,那么,
(1)求函數
的“穩定點”;
(2)若
,且
,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com