【題目】已知函數(shù)
.
(1)求
在
上的最值;
(2)若
,當(dāng)
有兩個(gè)極值點(diǎn)
時(shí),總有
,求此時(shí)實(shí)數(shù)
的值.
【答案】(1) 當(dāng)
時(shí),
,當(dāng)
時(shí),
.
(2)
.
【解析】分析:
,∵
,∴
,∴
,∴
在
上單調(diào)遞增,即可求解;(2)g′(x)=(x2+2x-1-a)ex,x1+x2=-2,a>-2,x2∈(-1,+∞),g(x2)≤t(2+x1)(ex2+1)(x22-1-a)ex2≤t(2+x1))(ex2+1),-2x2ex2≤t(-x2)(ex2+1),當(dāng)x2=0時(shí),t∈R;當(dāng)x2∈(-1,0)時(shí),
恒成立,當(dāng)x2∈(0,+∞)時(shí),
恒成立,綜上所述
.
詳解:
(1)
,
∵
,∴
,∴
,
∴
在
上單調(diào)遞增,
∴當(dāng)
時(shí),![]()
當(dāng)
時(shí),
(2)
,則![]()
根據(jù)題意,方程
有兩個(gè)不同的實(shí)根
,
所以
,即
,且
.由
,
可得
,又
,
所以上式化為
對任意的
恒成立.
(ⅰ)當(dāng)
時(shí),不等式
恒成立,
;
(ⅱ)當(dāng)
時(shí),
恒成立,即
.
令函數(shù)
,顯然,
是
上的增函數(shù),
所以當(dāng)
時(shí),
,所以
.
(ⅲ)當(dāng)
時(shí),
恒成立,即
.
由(ⅱ)得,當(dāng)
時(shí),
,所以
.
綜上所述
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓
:
,左頂點(diǎn)為
,經(jīng)過點(diǎn)
,過點(diǎn)
作斜率為
的直線
交橢圓
于點(diǎn)
,交
軸于點(diǎn)
.
![]()
(1)求橢圓
的方程;
(2)已知
為
的中點(diǎn),
,證明:對于任意的
都有
恒成立;
(3)若過點(diǎn)
作直線
的平行線交橢圓
于點(diǎn)
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
是定義在
上的函數(shù),其導(dǎo)函數(shù)為
,若
,
,則不等式
(其中
為自然對數(shù)的底數(shù))的解集為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,橢圓C過點(diǎn)
,兩個(gè)焦點(diǎn)為
,
,E,F是橢圓C上的兩個(gè)動點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),直線EF的斜率為
,直線l與橢圓C相切于點(diǎn)A,斜率為
.
求橢圓C的方程;
求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知直線
經(jīng)過點(diǎn)
,且與直線
的夾角為
,求直線
的方程;
(2)已知
中頂點(diǎn)
的平分線方程分別為
和
.求
邊所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校有
、
、
、
四件作品參加航模類作品比賽.已知這四件作品中恰有兩件獲獎,在結(jié)果揭曉前,甲、乙、丙、丁四位同學(xué)對這四件參賽作品的獲獎情況預(yù)測如下.
甲說:“
、
同時(shí)獲獎.”
乙說:“
、
不可能同時(shí)獲獎.”
丙說:“
獲獎.”
丁說:“
、
至少一件獲獎”
如果以上四位同學(xué)中有且只有兩位同學(xué)的預(yù)測是正確的,則獲獎的作品是( )
A. 作品
與作品
B. 作品
與作品
C. 作品
與作品
D. 作品
與作品![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知橢圓
的離心率為
,點(diǎn)
在橢圓
上.
(1)求橢圓
的方程;
(2)設(shè)直線與圓
相切,與橢圓
相交于
兩點(diǎn),求證:
是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在
的二項(xiàng)展開式中,所有項(xiàng)的二項(xiàng)式系數(shù)之和為
.
(1)求展開式的常數(shù)項(xiàng):
(2)求展開式中所有奇數(shù)項(xiàng)的系數(shù)和.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com