【題目】在一次數學競賽中,30名參賽學生的成績(百分制)的莖葉圖如圖所示:若將參賽學生按成績由高到低編為1﹣30號,再用系統抽樣法從中抽取6人,則其中抽取的成績在[77,90]內的學生人數為( ) ![]()
A.2
B.3
C.4
D.5
【答案】C
【解析】解:由莖葉圖可得30名學生的成績如下:
94,94,92,92,91;90,90,88,88,87;
87,85,84,83,83;83,83,82,82,82;
81,80,78,78,77;73,72,71,70,70.
若用系統抽樣,則需分6段,則第2,3,4,5區間段內抽取的學生成績符合題意,有4人.
故選:C.
【考點精析】解答此題的關鍵在于理解莖葉圖的相關知識,掌握莖葉圖又稱“枝葉圖”,它的思路是將數組中的數按位數進行比較,將數的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數,每個數具體是多少.
科目:高中數學 來源: 題型:
【題目】已知橢圓E:
的焦距為2
,一條準線方程為x=
,A,B分別為橢圓的右頂點和上頂點,點P,Q在的橢圓上,且點P在第一象限.
(1)求橢圓E的標準方程;
(2)若點P,Q關于坐標原點對稱,且PQ⊥AB,求四邊形ABCD的面積;
(3)若AP,BQ的斜率互為相反數,求證:PQ斜率為定值.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題
方程
有兩個不相等的負實根,
命題
不等式
的解集為
,
(1)若
為真命題,求
的取值范圍.
(2)若
為真命題,
為假命題,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中內動點P(x,y)到圓F:x2+(y﹣1)2=1的圓心F的距離比它到直線y=﹣2的距離小1.
(1)求動點P的軌跡方程;
(2)設點P的軌跡為曲線E,過點F的直線l的斜率為k,直線l交曲線E于A,B兩點,交圓F于C,D兩點(A,C兩點相鄰).
①若
=t
,當t∈[1,2]時,求k的取值范圍;
②過A,B兩點分別作曲線E的切線l1 , l2 , 兩切線交于點N,求△ACN與△BDN面積之積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數f(x)給出定義:
設f′(x)是函數y=f(x)的導數,f″(x)是函數f′(x)的導數,若方程f″(x)=0有實數解x0 , 則稱點(x0 , f(x0))為函數y=f(x)的“拐點”.
某同學經過探究發現:任何一個三次函數f(x)=ax3+bx2+cx+d(a≠0)都有“拐點”;任何一個三次函數都有對稱中心,且“拐點”就是對稱中心.給定函數
,請你根據上面探究結果,計算
= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓
的長軸長是短軸長的
倍,右焦點為
,點
分別是該橢圓的上、下頂點,點
是直線
上的一個動點(與
軸交點除外),直線
交橢圓于另一點
,記直線
,
的斜率分別為![]()
![]()
(1)當直線
過點
時,求
的值;
(2)求
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com