【題目】已知拋物線E:y2=8x,圓M:(x﹣2)2+y2=4,點N為拋物線E上的動點,O為坐標原點,線段ON的中點P的軌跡為曲線C.
(1)求曲線C的方程;
(2)點Q(x0 , y0)(x0≥5)是曲線C上的點,過點Q作圓M的兩條切線,分別與x軸交于A,B兩點,求△QAB面積的最小值.
【答案】
(1)解:設P(x,y),則點N(2x,2y)在拋物線E:y2=8x上,
∴4y2=16x,
∴曲線C的方程為y2=4x;
(2)解:設切線方程為y﹣y0=k(x﹣x0).
令y=0,可得x=
,
圓心(2,0)到切線的距離d=
=2,
整理可得
.
設兩條切線的斜率分別為k1,k2,則k1+k2=
,k1k2=
,
∴△QAB面積S=
|(x0﹣
)﹣(x0﹣
)|y0=2 ![]()
設t=x0﹣1∈[4,+∞),則f(t)=2(t+
+2)在[4,+∞)上單調遞增,
∴f(t)≥
,即△QAB面積的最小值為 ![]()
【解析】(1)利用代入法,求曲線C的方程;(2)設切線方程為y﹣y0=k(x﹣x0),圓心(2,0)到切線的距離d=
=2,整理可得
,表示出面積,利用函數的單調性球心最小值.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=cos(ωx+φ)(ω>0),f'(x)是f(x)的導函數,若f(α)=0,f'(α)>0,且f(x)在區間[α,
+α)上沒有最小值,則ω取值范圍是( )
A.(0,2)
B.(0,3]
C.(2,3]
D.(2,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在△ABC中,∠B=30°,AC=
,D是邊AB上一點.
(1)求△ABC面積的最大值;
(2)若CD=2,△ACD的面積為2,∠ACD為銳角,求BC的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(14分)已知a,b為常數,且a≠0,函數f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然對數的底數).
(I)求實數b的值;
(II)求函數f(x)的單調區間;
(III)當a=1時,是否同時存在實數m和M(m<M),使得對每一個t∈[m,M],直線y=t與曲線y=f(x)(x∈[
,e])都有公共點?若存在,求出最小的實數m和最大的實數M;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}滿足an>1,其前n項和Sn滿足6Sn=an2+3an+2
(1)求數列{an}的通項公式及前n項和Sn;
(2)設數列{bn}滿足bn=
,且其前n項和為Tn , 證明:
≤Tn<
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據統計,某地區植被覆蓋面積
公頃
與當地氣溫下降的度數
之間呈線性相關關系,對應數據如下:
| 20 | 40 | 60 | 80 |
| 3 | 4 | 4 | 5 |
請用最小二乘法求出y關于x的線性回歸方程;
根據
中所求線性回歸方程,如果植被覆蓋面積為300公頃,那么下降的氣溫大約是多少
?
參考公式:線性回歸方程
;其中
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com