【題目】已知橢圓
(
為參數),A,B是C上的動點,且滿足
(O為坐標原點),以原點O為極點,x軸的正半軸為極軸建立坐標系,點D的極坐標為
.
(1)求橢圓C的極坐標方程和點D的直角坐標;
(2)利用橢圓C的極坐標方程證明
為定值.
科目:高中數學 來源: 題型:
【題目】在信息時代的今天,隨著手機的發展,“微信”越來越成為人們交流的一種方式,某機構對“使用微信交流”的態度進行調查,隨機抽取了100人,他們年齡的頻數分布及對“使用微信交流”贊成的人數如下表:(注:年齡單位:歲)
年齡 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數 | 10 | 30 | 30 | 20 | 5 | 5 |
贊成人數 | 8 | 25 | 24 | 10 | 2 | 1 |
(1)若以“年齡45歲為分界點”,由以上統計數據完成下面的2×2列聯表,并通過計算判斷是否在犯錯誤的概率不超過0.001的前提下認為“使用微信交流的態度與人的年齡有關”?
年齡不低于45歲的人數 | 年齡低于45歲的人數 | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
若從年齡在[55,65),[65,75)的別調查的人中各隨機選取兩人進行追蹤調查,記選中的4人中贊成“使用微信交流”的人數為X,求隨機變量X的分布列及數學期望.
參考數據:
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 6.635 | 7.879 | 10.828 |
參考公式:K2=
,其中n=a+b+c+d.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校為了解學生對食堂用餐的滿意度,從全校在食堂用餐的3000名學生中,隨機抽取100名學生對食堂用餐的滿意度進行評分.根據學生對食堂用餐滿意度的評分,得到如圖所示的頻率分布直方圖,
![]()
(1)求頻率分布直方圖中a的值及該樣本的中位數
(2)規定:學生對食堂用餐滿意度的評分不高于80分為“不滿意”,試估計該校在食堂用餐的3000名學生中“不滿意”的人數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,圓
的圓心與橢圓C的上頂點重合,點P的縱坐標為
.
(1)求橢圓C的標準方程;
(2)若斜率為2的直線l與橢圓C交于A,B兩點,探究:在橢圓C上是否存在一點Q,使得
,若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)是定義域為R的偶函數.當x≥0時,
,若關于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且僅有6個不同實數根,則實數a的取值范圍是( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若α是第一象限角,則sinα+cosα的值與1的大小關系是( )
A. sinα+cosα>1B. sinα+cosα=1C. sinα+cosα<1D. 不能確定
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(選修4-4:坐標系與參數方程)
已知曲線C的極坐標方程是ρ=2cosθ,以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線L的參數方程是
(t為參數).
(1)求曲線C的直角坐標方程和直線L的普通方程;
(2)設點P(m,0),若直線L與曲線C交于A,B兩點,且|PA||PB|=1,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=
,F為PC的中點,AF⊥PB.
(1)求PA的長;
(2)求二面角B﹣AF﹣D的正弦值.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com