【題目】如圖,四邊形
與
均為菱形,
,且
.
![]()
(1)求證:
平面
;
(2)求直線
與平面
所成角的正弦值.
【答案】(1)見解析;(2)
.
【解析】試題分析:(1)根據(jù)菱形性質(zhì)得
,設
與
相交于點
,由等腰三角形性質(zhì)得
,再根據(jù)線面垂直判定定理得
平面
;(2)先證明
平面
,再建立空間直角坐標系,設立各點坐標,根據(jù)方程組解出平面法向量。利用向量數(shù)量積求出向量夾角,最后根據(jù)向量夾角與線面角互余關(guān)系確定直線
與平面
所成角的正弦值.
試題解析:(1)設
與
相交于點
,連接
,
∵四邊形
為菱形,∴
,且
為
中點,
∵
,∴
,
又
,∴
平面
.
(2)連接
,∵四邊形
為菱形,且
,∴
為等邊三角形,
∵
為
中點,∴
,又
,∴
平面
.
∵
兩兩垂直,∴建立空間直角坐標系
,如圖所示,
![]()
設
,∵四邊形
為菱形,
,∴
.
∵
為等邊三角形,∴
.
∴
,
∴
.
設平面
的法向量為
,則
,
取
,得
.
設直線
與平面
所成角為
,
則
.
科目:高中數(shù)學 來源: 題型:
【題目】已知向量
=(2,﹣3),
=(﹣5,4),
=(1﹣λ,3λ+2).
(1)若△ABC為直角三角形,且∠B為直角,求實數(shù)λ的值;
(2)若點A、B、C能構(gòu)成三角形,求實數(shù)λ應滿足的條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某個四面體的三視圖,則該四面體的表面積為( ) ![]()
A.8+8
+4 ![]()
B.8+8
+2 ![]()
C.2+2
+ ![]()
D.
+
+ ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(1)求曲線
在點
處的切線方程;
(2)求函數(shù)
的單調(diào)區(qū)間及極值;
(3)對
,
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}中,a1=1,an , an+1是方程x2﹣(2n+1)x+
的兩個根,則數(shù)列{bn}的前n項和Sn=( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線
經(jīng)過點
,傾斜角為
.在以原點為極點,
軸正半軸為極軸的極坐標系中,曲線
的方程為
.
(1)寫出直線
的參數(shù)方程和曲線
的直角坐標方程;
(2)設直線
與曲線
相交于
兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,
(其中
,
),且函數(shù)
的圖象在點
處的切線與函數(shù)
的圖象在點
處的切線重合.
(1)求實數(shù)
,
的值;
(2)記函數(shù)
,是否存在最小的正常數(shù)
,使得當
時,對于任意正實數(shù)
,不等式
恒成立?給出你的結(jié)論,并說明結(jié)論的合理性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn=n2﹣n,數(shù)列{bn}的前n項和Tn=4﹣bn .
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設cn=
anbn , 求數(shù)列{cn}的前n項和Rn的表達式.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com