【題目】公司生產一種電子儀器的固定成本為20000元,每生產一臺儀器需增加投入100元,已知總收益滿足函數:![]()
其中
x 是儀器的月產量.
(1)將利潤
表示為月產量
的函數;
(2)當月產量
為何值時,公司所獲利潤最大?最大利潤是多少元?(總收益=總成本+利潤)![]()
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a1=1,且anan+1=2n , n∈N* , 則數列{an}的通項公式為( )
A.an=(
)n﹣1
B.an=(
)n
C.an= ![]()
D.an= ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】菜農定期使用低害殺蟲農藥對蔬菜進行噴灑,以防止害蟲的危害,但采集上市時蔬菜仍存有少量的殘留農藥,食用時需要用清水清洗干凈,下表是用清水
(單位:千克)清洗該蔬菜
千克后,蔬菜上殘留的農藥
(單位:微克)的統計表:
在坐標系中描出散點圖,并判斷變量
與
的相關性;
![]()
(2)若用解析式
作為蔬菜農藥殘量
與用水量
的回歸方程,令
,計算平均值
和
,完成以下表格(填在答題卡中),求出
與
的回歸方程.(
精確到0.1)
(3)對于某種殘留在蔬菜上的農藥,當它的殘留量低于20微克時對人體無害,為了放心食用該蔬菜,請估計需要用多少千克的清水清洗一千克蔬菜?(精確到0.1,參考數據
)(附:線性回歸方程計算公式:
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】公差不為0的等差數列
中,已知
且
,其前
項和
的最大值為( )
A. 25 B. 26 C. 27 D. 28
【答案】B
【解析】設等差數列
的公差為
,
∵
,
∴
,
整理得
,
∵
,
∴
.
∴
,
∴當
時,
.
故
最大,且
.選B.
點睛:求等差數列前n項和最值的常用方法:
①利用等差數列的單調性, 求出其正負轉折項,便可求得和的最值;
②將等差數列的前n項和
(A、B為常數)看作關于n的二次函數,根據二次函數的性質求最值.
【題型】單選題
【結束】
9
【題目】如圖,網格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的表面積為( )
![]()
A.
B.
C. 90 D. 81
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等比數列{an}中,已知a1=2,a4=16.
(1)求數列{an}的通項公式an;
(2)若a3 , a5分別是等差數列{bn}的第4項和第16項,求數列{bn}的通項公式及前n項和Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:
.
(1)若圓C的切線在x軸和y軸上的截距相等,且截距不為零,求此切線的方程;
(2)從圓C外一點P
向該圓引一條切線,切點為M,O為坐標原點,且有
,
求使得
取得最小值的點P的坐標
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com