【題目】已知
,
兩點(diǎn),滿足:
,
,
,則
的最大值為________.
【答案】![]()
【解析】
設(shè)A(x1,y1),B(x2,y2),
=(x1,y1),
=(x2,y2),由圓的方程和向量數(shù)量積的定義、坐標(biāo)表示,可得三角形OAB為等邊三角形,AB=1,
的幾何意義為點(diǎn)A,B兩點(diǎn)到直線x+y﹣1=0的距離d1與d2之和,由兩平行線的距離可得所求最大值.
解:設(shè)A(x1,y1),B(x2,y2),
=(x1,y1),
=(x2,y2),
由x12+y12=1,x22+y22=1,x1x2+y1y2=
,
可得A,B兩點(diǎn)在圓x2+y2=1上,
且
=1×1×cos∠AOB=
,
即有∠AOB=60°,
即三角形OAB為等邊三角形,AB=1,
的幾何意義為點(diǎn)A,B兩點(diǎn)
到直線x+y﹣1=0的距離d1與d2之和,
顯然A,B在第三象限,AB所在直線與直線x+y=1平行,
可設(shè)AB:x+y+t=0,(t>0),
由圓心O到直線AB的距離d=
,
可得2
=1,解得t=
,
即有兩平行線的距離為
=
,
即
的最大值為
,
故答案為:
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)
滿足
,
的虛部為2,
(1)求復(fù)數(shù)
;
(2)設(shè)
在復(fù)平面上對(duì)應(yīng)點(diǎn)分別為
,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面四邊形ABCD中,已知A=
,B=
,AB=6.在AB邊上取點(diǎn)E,使得BE=1,連接EC,ED.若∠CED=
,EC=
.
![]()
(1)求sin∠BCE的值;
(2)求CD的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,x
R其中a>0.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間(-3,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;
(Ⅲ)當(dāng)a=1時(shí),設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記
,求函數(shù)g(t)在區(qū)間[-4,-1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長(zhǎng)方體
中,
,
,
,M為AB的中點(diǎn),點(diǎn)P在線段
上,點(diǎn)P到直線
的距離的最小值為________.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016高考新課標(biāo)II,理15)有三張卡片,分別寫有1和2,1和3,2和3.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:“我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:“我與丙的卡片上相同的數(shù)字不是1”,丙說:“我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下:
![]()
(1)根據(jù)箱產(chǎn)量的頻率分布直方圖填寫下面
列聯(lián)表,從等高條形圖中判斷箱產(chǎn)量是否與新、舊網(wǎng)箱養(yǎng)殖方法有關(guān);
(2)根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān)?
箱產(chǎn)量<50kg | 箱產(chǎn)量≥50kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
參考公式:
(1)給定臨界值表
P(K | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(2)
其中
為樣本容量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,且過點(diǎn)
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過橢圓
的左焦點(diǎn)的直線
與橢圓
交于
兩點(diǎn),直線
過坐標(biāo)原點(diǎn)且與直線
的斜率互為相反數(shù).若直線
與橢圓交于
兩點(diǎn)且均不與點(diǎn)
重合,設(shè)直線
與
軸所成的銳角為
,直線
與
軸所成的銳角為
,判斷
與
的大小關(guān)系并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)
其中![]()
(1)討論函數(shù)
的單調(diào)性;
(2)若函數(shù)
有兩個(gè)零點(diǎn),
(i)求
的取值范圍;
(ii)設(shè)
的兩個(gè)零點(diǎn)分別為x1,x2,證明:x1x2>e2.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com