【題目】已知直三棱柱ABC﹣A1B1C1的所有棱長都為2,點P,Q分別為棱CC1 , BC的中點,則四面體A1﹣B1PQ的體積為 .
科目:高中數學 來源: 題型:
【題目】意大利著名數學家斐波那契在研究兔子的繁殖問題時,發現有這樣的一列數:1,1,2,3,5,8,…,該數列的特點是:前兩個數均為1,從第三個數起,每一個數都等于它前面兩個數的和.人們把這樣的一列數組成的數列{an}稱為斐波那契數列,則
﹣
=( )
A.0
B.﹣1
C.1
D.2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知常數
且
,在數列
中,首項
,
是其前
項和,且
,
.
(1)設
,
,證明數列
是等比數列,并求出
的通項公式;
(2)設
,
,證明數列
是等差數列,并求出
的通項公式;
(3)若當且僅當
時,數列
取到最小值,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“若A則B”為真命題,而“若B則C”的逆否命題為真命題,且“若A則B”是“若C則D”的充分條件,而“若D則E”是“若B則C”的充要條件,則¬B是¬E的____條件;A是E的____條件.(填“充分”“必要”、“充要”或“既不充分也不必要”)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩組各有三名同學,他們在一次測試中的成績分別為:甲組:88、89、90;乙組:87、88、92.如果分別從甲、乙兩組中隨機選取一名同學,則這兩名同學的成績之差的絕對值不超過3的概率是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分10分)選修4—4,坐標系與參數方程
已知曲線
,直線
:
(
為參數).
(I)寫出曲線
的參數方程,直線
的普通方程;
(II)過曲線
上任意一點
作與
夾角為
的直線,交
于點
,
的最大值與最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年俄羅斯世界杯激戰正酣,某校工會對全校教職工在世界杯期間每天收看比賽的時間作了一次調查,得到如下頻數分布表:
收看時間 (單位:小時) |
|
|
|
|
|
|
| 14 |
|
| 28 | 20 | 12 |
(1)若將每天收看比賽轉播時間不低于3小時的教職工定義為“球迷”,否則定義為“非球迷”,請根據頻數分布表補全
列聯表:
男 | 女 | 合計 | |
球迷 | 40 | ||
非球迷 |
| ||
合計 |
并判斷能否有90%的把握認為該校教職工是否為“球迷”與“性別”有關;
(2)在全校“球迷”中按性別分層抽樣抽取6名,再從這6名“球迷”中選取2名世界杯知識講座.記其中女職工的人數為
,求的
分布列與數學期望.
附表及公式:
| 0.15 | 0.10 | 0.05 | 0.025 |
| 2.072 | 2.706 | 3.841 | 5.024 |
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校在2 015年11月份的高三期中考試后,隨機地抽取了50名學生的數學成績并進行了分析,結果這50名同學的成績全部介于80分到140分之間.現將結果按如下方式分為6組,第一組[80,90),第二組[90,100),…第六組[130,140],得到如圖所示的頻率分布直方圖. ![]()
(1)試估計該校數學的平均成績(同一組中的數據用該區間的中點值作代表);
(2)這50名學生中成績在120分以上的同學中任意抽取3人,該3人在130分(含130分)以上的人數記為X,求X的分布列和期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com