【題目】設(shè)函數(shù)f(x)=lnx+
,m∈R
(1)當(dāng)m=e(e為自然對數(shù)的底數(shù))時,求f(x)的最小值;
(2)討論函數(shù)g(x)=f′(x)﹣
零點(diǎn)的個數(shù);
(3)(理科)若對任意b>a>0,
<1恒成立,求m的取值范圍.
【答案】
(1)解:當(dāng)m=e時,
,x>0,
解f′(x)>0,得x>e,
∴f(x)單調(diào)遞增;
同理,當(dāng)0<x<e時,f′(x)<0,f(x)單調(diào)遞減,
∴f(x)只有極小值f(e),
且f(e)=lne+
=2,
∴f(x)的極小值為2
(2)解:∵g(x)=
=
=0,
∴m=
,
令h(x)=x﹣
,x>0,m∈R,
則h(1)=
,h′(x)=1﹣x2=(1+x)(1﹣x),
令h′(x)>0,解得0<x<1,
∴h(x)在區(qū)間(0,1)上單調(diào)遞增,值域?yàn)椋?,
);
同理,令h′(x)<0,解得x>1,
∴g(x)要區(qū)是(1,+∞)上單調(diào)遞減,值域?yàn)椋ī仭蓿?
).
∴當(dāng)m≤0,或m=
時,g(x)只有一個零點(diǎn);
當(dāng)0<m<
時,g(x)有2個零點(diǎn);
當(dāng)m>
時,g(x)沒有零點(diǎn)
(3)解:(理)對任意b>a>0,
<1恒成立,
等價于f(b)﹣b<f(a)﹣a恒成立;
設(shè)h(x)=f(x)﹣x=lnx+
﹣x(x>0),
則h(b)<h(a).
∴h(x)在(0,+∞)上單調(diào)遞減;
∵h(yuǎn)′(x)=
﹣
﹣1≤0在(0,+∞)上恒成立,
∴m≥﹣x2+x=﹣
+
(x>0),
∴m≥
;
對于m=
,h′(x)=0僅在x=
時成立;
∴m的取值范圍是[
,+∞)
【解析】(1)當(dāng)m=e時,
,x>0,由此利用導(dǎo)數(shù)性質(zhì)能求出f(x)的極小值.(2)由g(x)=
=
=0,得m=
,令h(x)=x﹣
,x>0,m∈R,則h(1)=
,h′(x)=1﹣x2=(1+x)(1﹣x),由此利用導(dǎo)數(shù)性質(zhì)能求出函數(shù)g(x)=f′(x)﹣
零點(diǎn)的個數(shù).(3)(理)當(dāng)b>a>0時,f′(x)<1在(0,+∞)上恒成立,由此能求出m的取值范圍.
【考點(diǎn)精析】本題主要考查了函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識點(diǎn),需要掌握求函數(shù)
的極值的方法是:(1)如果在
附近的左側(cè)
,右側(cè)
,那么
是極大值(2)如果在
附近的左側(cè)
,右側(cè)
,那么
是極小值才能正確解答此題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在
軸上,離心率為
,過點(diǎn)
的直線
與橢圓交于
兩點(diǎn).
(1)若直線
的斜率為1, 且
,求橢圓的標(biāo)準(zhǔn)方程;
(2)若(1)中橢圓的右頂點(diǎn)為
,直線
的傾斜角為
,問
為何值時,
取得最大值,并求出這個最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
與圓
相交于
四個點(diǎn),
,
在
軸右側(cè),
為坐標(biāo)原點(diǎn)。
(1)當(dāng)曲線
與圓
恰有兩個公共點(diǎn)時,求
;
(2)當(dāng)
面積最大時,求
;
(3)證明:直線
與直線
相交于定點(diǎn)
,求求出點(diǎn)
的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時,xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求C;
(2)若c=
,△ABC的面積為
,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某位同學(xué)進(jìn)行寒假社會實(shí)踐活動,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進(jìn)行分析研究,他分別記錄了1月11日至1月15日的白天平均氣溫
(℃)與該小賣部的這種飲料銷量
(杯),得到如下數(shù)據(jù):
日期 | 1月11日 | 1月12日 | 1月13日 | 1月14日 | 1月15日 |
平均氣溫 | 9 | 10 | 12 | 11 | 8 |
銷量 | 23 | 25 | 30 | 26 | 21 |
(1)請根據(jù)所給五組數(shù)據(jù),求出
關(guān)于
的線性回歸方程
;
(2)據(jù)(1)中所得的線性回歸方程,若天氣預(yù)報1月16日的白天平均氣溫7(℃),請預(yù)測該奶茶店這種飲料的銷量.
(參考公式:
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
:實(shí)數(shù)
滿足
,其中
;
:實(shí)數(shù)
滿足
.
(1)若
,且
為真,
為假,求實(shí)數(shù)
的取值范圍;
(2)若
是
的充分不必要條件,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下判斷正確的是( )
A.函數(shù)y=f(x)為R上可導(dǎo)函數(shù),則f'(x0)=0是x0為函數(shù)f(x)極值點(diǎn)的充要條件
B.命題“
”的否定是“?x∈R,x2+x﹣1>0”
C.“
”是“函數(shù)f(x)=sin(ωx+φ)是偶函數(shù)”的充要條件
D.命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為假命題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com