【題目】已知橢圓
:
的離心率為
,且以兩焦點(diǎn)為直徑的圓的內(nèi)接正方形面積為2.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若直線
:
與橢圓
相交于
,
兩點(diǎn),在
軸上是否存在點(diǎn)
,使直線
與
的斜率之和
為定值?若存在,求出點(diǎn)
坐標(biāo)及該定值,若不存在,試說明理由.
【答案】
(1)解:由已知可得
解得
,
,
故答案為:所求橢圓方程為
.
(2)由
得
,
則
,解得
或
.
設(shè)
,
,
則
,
,
設(shè)存在點(diǎn)
,則
,
,
所以
.
要使
為定值,只需
與參數(shù)
無關(guān),
故
,解得
,
當(dāng)
時(shí),
.
故答案為:存在點(diǎn)
,使得
為定值,且定值為0.
【解析】(1)由已知條件得到關(guān)于a,b,c的方程組求a,b,c得到橢圓方程.
(2)將直線和橢圓方程聯(lián)立成方程組,消去y,得關(guān)于x的一元二次方程,結(jié)合韋達(dá)定理將斜率和表示出來,由式子為定值求m的值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|log3x|,實(shí)數(shù)m,n滿足0<m<n,且f(m)=f(n),若f(x)在[m2 , n]上的最大值為2,則
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
,若a,b,c互不相等,且f(a)=f(b)=f(c),則a+b+c的取值范圍是( )
A.(4,2018)
B.(4,2020)
C.(3,2020)
D.(2,2020)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義一個集合A的所有子集組成的集合叫做集合A的冪集,記為P(A),用n(A)表示有限集A的元素個數(shù),給出下列命題:①對于任意集合A,都有AP(A);②存在集合A,使得n[P(A)]=3;③用表示空集,若A∩B=,則P(A)∩P(B)=;④若A
B,,則P(A)
P(B);⑤若n(A)-n(B)=1,則n[P(A)]=2×n[P(B)]其中正確的命題個數(shù)為( )。
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}是以a為首項(xiàng),q為公比的等比數(shù)列,數(shù)列{bn}滿足bn=1+a1+a2+…+an(n=1,2,…),數(shù)列{cn}滿足cn=2+b1+b2+…+bn(n=1,2,…).若{cn}為等比數(shù)列,則a+q=( )
A.![]()
B.3
C.![]()
D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=
是奇函數(shù),則使f(x)>3成立的x的取值范圍為( )
A.(-∞,-1)
B.(-1,0)
C.(0,1)
D.(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
,底面
為菱形,
平面
,
,
為
的中點(diǎn),
.![]()
(I)求證:直線
平面
;
(II)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=1+
+sin x在區(qū)間[-k,k](k>0)上的值域?yàn)閇m,n],則m+n的值是( )
A.0
B.1
C.2
D.4
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com