【題目】已知函數(shù)
,其中
.
(Ⅰ)若
是函數(shù)
的極值點(diǎn),求
的值;
(Ⅱ)若
在區(qū)間
上單調(diào)遞增,求
的取值范圍;
【答案】(I)
;(II)
.
【解析】
試題分析:(I)由
,得
,根據(jù)
是函數(shù)
的極值點(diǎn),即可求解實(shí)數(shù)
的值;(II)由
在區(qū)間
上單調(diào)遞增,得
在區(qū)間
上恒成立,得到
對(duì)區(qū)間
恒成立,設(shè)
,利用導(dǎo)數(shù)求解函數(shù)
的最小值,即可求解實(shí)數(shù)
的取值范圍.
試題解析:(Ⅰ)由
,得
,………………2分
∵
是函數(shù)
的極值點(diǎn),
∴
,解得
,………4分
經(jīng)檢驗(yàn)
為函數(shù),
的極值點(diǎn),(不檢驗(yàn)1分扣去)
所以
.……………5分
(Ⅱ)∵
在區(qū)間
上單調(diào)遞增,
∴
在區(qū)間
上恒成立,
∴
對(duì)區(qū)間
恒成立,………8分
令
,則![]()
∴當(dāng)
時(shí),
,有
……………12分
∴
的取值范圍為
…………13分
法二:上同,
∴
對(duì)區(qū)間
恒成立,………………8分
令
,
,則
,![]()
∴
,![]()
∵
,在
上單調(diào)遞增函數(shù)
∴
………………12分
∴
的取值范圍為
………………13分
法三:∵
在區(qū)間
上單調(diào)遞增,
∴
在區(qū)間
上恒成立,………………8分
記
,則
或![]()
即
或![]()
解得
………………12分
∴
的取值范圍為
……………13分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
在
處取得極值.
(1)討論
和
是函數(shù)
的極大值還是極小值;
(2)過(guò)點(diǎn)
作曲線
的切線,求此切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
是二次函數(shù),不等式
的解集是
,且
在區(qū)間
上的最大值是12.
(1)求
的解析式;
(2)是否存在自然數(shù)
,使得方程
在區(qū)間
內(nèi)有且只有兩個(gè)不等的實(shí)數(shù)根?若存在,求出
的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司今年年初用25萬(wàn)元引進(jìn)一種新的設(shè)備,投入設(shè)備后每年收益為21萬(wàn)元.該公司第n年需要付出設(shè)備的維修和工人工資等費(fèi)用
的信息如下圖.
![]()
(1)求
;
(2)引進(jìn)這種設(shè)備后,第幾年后該公司開(kāi)始獲利;
(3)這種設(shè)備使用多少年,該公司的年平均獲利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種商品原來(lái)每件售價(jià)為25元,年銷(xiāo)售8萬(wàn)件.
(1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高1元,銷(xiāo)售量將相應(yīng)減少2000件,要使銷(xiāo)售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?
(2)為了擴(kuò)大該商品的影響力,提高年銷(xiāo)售量,公司決定明年對(duì)該商品進(jìn)行全面技術(shù)革新和營(yíng)銷(xiāo)策略改革,并提高定價(jià)到
元,公司擬投入
萬(wàn)元作為技改費(fèi)用,投入50萬(wàn)元作為固定宣傳費(fèi)用,投入
作為浮動(dòng)宣傳費(fèi)用.試問(wèn):當(dāng)該商品明年的銷(xiāo)售量
至少應(yīng)達(dá)到多少萬(wàn)件時(shí),才可能使明年的銷(xiāo)售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓
的左、右焦點(diǎn)分別是
,下頂點(diǎn)為
,線段
的中點(diǎn)為
(
為坐標(biāo)原點(diǎn)),如圖,若拋物線
與
軸的交點(diǎn)為
,且經(jīng)過(guò)
點(diǎn).
![]()
(1)求橢圓
的方程;
(2)設(shè)
,
為拋物線
上的一動(dòng)點(diǎn),過(guò)點(diǎn)
作拋物線
的切線交橢圓
于點(diǎn)
、
兩點(diǎn),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合
為函數(shù)
的定義域,集合
為不等式
的解集.
(1)若
,求
;
(2)若
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,
是圓
的直徑,
垂直圓
所在的平面,
是圓
上的點(diǎn).
![]()
(1)求證:
平面
;
(2)設(shè)
為
的中點(diǎn),
為
的重心,求證:
平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分別是AP,AD的中點(diǎn).
![]()
求證:(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com