【題目】如圖,AD是△ABC的中線,E,F分別是AD和AD延長線上的點,且DE=DF,連接BF,CE,下列說法:①△ABD 和△ACD面積相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正確的是( )
![]()
A. ①② B. ③⑤ C. ①③④ D. ①④⑤
【答案】C
【解析】
根據三角形中線的定義可得BD=CD,根據等底等高的三角形的面積相等判斷出①正確,然后利用“邊角邊”證明△BDF和△CDE全等,根據全等三角形對應邊相等可得CE=BF,全等三角形對應角相等可得∠F=∠CED,再根據內錯角相等,兩直線平行可得BF∥CE.
∵AD是△ABC的中線,
∴BD=CD,
∴△ABD和△ACD面積相等,故①正確;
∵AD為△ABC的中線,
∴BD=CD,∠BAD和∠CAD不一定相等,故②錯誤;
在△BDF和△CDE中,
,
∴△BDF≌△CDE(SAS),故③正確;
∴∠F=∠DEC,
∴BF∥CE,故④正確;
∵△BDF≌△CDE,
∴CE=BF,故⑤錯誤,
正確的結論為:①③④,
故選C.
科目:初中數學 來源: 題型:
【題目】定義:若
則稱
與
是關于1的平衡數。
(1)5與______是關于1的平衡數;
(2)
與________是關于1的平衡數(用含
的代數式表示);
(3)若
判斷
與是
否是關于1的平衡數,并說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,A(-1,5)、B(-1,0)、C(-4,3)
(1) 求出△ABC的面積
(2) 在圖形中作出△ABC關于y軸的對稱圖形△A1B1C1,并寫出A1、B1、C1的坐標
(3) 是否存在一點P到AC、AB的距離相等,同時到點A、點B的距離也相等.若存在保留作圖痕跡標出點P的位置,并簡要說明理由;若不存在,請說明理由
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料,然后解決問題:和、差、倍、分等問題中有著廣泛的應用,截長法與補短法在證明線段的和、差、倍、分等問題中有著廣泛的應用.具體的做法是在某條線段上截取一條線段等于某特定線段,或將某條線段延長,使之與某特定線段相等,再利用全等三角形的性質等有關知識來解決數學問題.
(1)如圖1,在△ABC中,若 AB=12,AC=8,求 BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使 DE=AD,再連接 BE,把AB、AC、2AD集中在△ABE中.利用三角形三邊的關系即可判斷中線 AD的取值范圍是_______.
問題解決:
(2)如圖2,在四邊形ABCD中,AB=AD,∠ABC+∠ADC=180°,E、F分別是邊BC,CD上的兩點,且∠EAF=
∠BAD,求證:BE+DF=EF.
問題拓展:
(3)如圖3,在△ABC中,∠ACB=90°,∠CAB=60°,點D是△ABC 外角平分線上一點,DE⊥AC交 CA延長線于點E,F是 AC上一點,且DF=DB.
求證:AC﹣AE=
AF.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在圖中網格上按要求畫出圖形,并回答問題:
(1)如果將三角形
平移,使得點
平移到圖中點
位置,點
、點
的對應點分別為點
、點
,請畫出三角形
;
(2)畫出三角形
關于點
成中心對稱的三角形
.
(3)三角形
與三角形
是否關于某個點成中心對稱?如果是,請在圖中畫出這個對稱中心,并記作點
.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算下列各題
(1)3b﹣2a2﹣(﹣4a+a2+3b)+a2;
(2)﹣13﹣(1﹣
)×
×[2﹣(﹣3)2];
(3)﹣|﹣23|+15﹣|4.5﹣(﹣2.5)|;
(4)89′25″﹣48′58″;
(5)化簡求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=
,b=
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)已知多項式
x2ym+1+xy2-2x3+8是六次四項式,單項式-
x3ay5-m的次數與多項式的次數相同,求m,a的值;
(2)已知多項式mx4+(m-2)x3+(2n+1)x2-3x+n不含x2和x3的項,試寫出這個多項式,再求當x=-1時多項式的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com