【題目】一名射擊運動員連續打靶8次,命中的環數如圖所示,則命中環數的眾數與中位數分別為( ) ![]()
A.9環與8環
B.8環與9環
C.8環與8.5環
D.8.5環與9環
科目:初中數學 來源: 題型:
【題目】已知:在△ABC中,∠CAB=90°,AB=AC.
(1)如圖1,P,Q是BC邊上兩點,AP=AQ,∠BAP=20°,求∠AQB的度數;
(2)點P,Q是BC邊上兩動點(不與B,C重合),點P在點Q左側,且AP=AQ,點Q關于直線AC的對稱點為M,連接AM,PM.
①依題意將圖2補全;
②小明通過觀察和實驗,提出猜想:在點P,Q運動的過程中,始終有PM=
PA.他把這個猜想與同學們進行交流,通過討論,形成以下證明猜想的思路:
(Ⅰ)要想證明PM=
PA,只需證△APM為等腰直角三角形;
(Ⅱ)要想證明△APM為等腰直角三角形,只需證∠PAM=90°,PA=AM;
…
請參考上面的思路,幫助小明證明PM=
PA.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某面粉加工廠加工的面粉,用每袋可裝10g面粉的袋子裝了200袋經過稱重,質量超過標準質量10kg的用正數表示,質量低于標準質量10kg的用負數表示,結果記錄如下
與標準質量的偏差(kg) | ﹣1.5 | ﹣1 | ﹣0.5 | 0 | 0.5 | 1 | 2 |
袋數(袋) | 40 | 30 | 10 | 25 | 40 | 20 | 35 |
(1)求這批面粉的總質量;
(2)如果100kg小麥加工80kg面粉,那么這批面粉是由多少千克小麥加工的?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知∠ABC=90°,點P為射線BC上任意一點(點P與點B不重合),分別以AB、AP為邊在∠ABC的內部作等邊△ABE和△APQ,連接QE并延長交BP于點F.
(1)如圖1,若AB=
,點A,E,P恰好在一條直線上時,求EF的長(直接寫出結果);
(2)如圖2,當點P為射線BC上任意一點時,求證:BF=EF;
(3)若AB=
,設BP=2,求QF的長.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,過點C作CD⊥CB交∠CBA的外角平分線于點D,連接AD,過點C作∠BCE=∠BAD,交AB的延長線于點E.若CD=3,則CE=_____.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,對正方形紙片ABCD進行如下操作: ![]()
(i)過點D任作一條直線與BC邊相交于點E1(如圖①),記∠CDE1=α1;
(ii)作∠ADE1的平分線交AB邊于點E2(如圖②),記∠ADE2=α2;
(iii)作∠CDE2的平分線交BC邊于點E3(如圖③),記∠CDE3=α3;
按此作法從操作(2)起重復以上步驟,得到α1 , α2 , …,αn , …,現有如下結論:①當α1=10°時,α2=40°;②2α4+α3=90°; ③當α5=30°時,△CDE9≌△ADE10;④當α1=45°時,BE2=
.
其中正確的個數為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將含30°角的三角板ABC如圖放置,使其三個頂點分別落在三條平行直線上,其中∠ACB=90°,當∠1=60°時,圖中等于30°的角的個數是()
![]()
A. 6個 B. 5個 C. 4個 D. 3個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為a的正方形,點G、E分別是邊AB、BC的中點,∠AEF=90°,且EF交正方形外角的平方線CF于點F. ![]()
(1)證明:△AGE≌△ECF;
(2)求△AEF的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2013年6月,某中學結合廣西中小學閱讀素養評估活動,以“我最喜愛的書籍”為主題,對學生最喜愛的一種書籍類型進行隨機抽樣調查,收集整理數據后,繪制出以下兩幅未完成的統計圖,請根據圖1和圖2提供的信息,解答下列問題: ![]()
(1)在這次抽樣調查中,一共調查了多少名學生?
(2)請把折線統計圖(圖1)補充完整;
(3)求出扇形統計圖(圖2)中,體育部分所對應的圓心角的度數;
(4)如果這所中學共有學生1800名,那么請你估計最喜愛科普類書籍的學生人數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com