【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,AD為△ABC角平分線. ![]()
(1)用圓規在AB上作一點P,滿足DP⊥AB;
(2)求:CD的長度.
【答案】
(1)解:)、如圖,點P即為所求;
![]()
(2)解:∵AD平分∠BAC,
∴∠CAD=∠BAD.
又∵DC⊥AC、DP⊥AB,
∴∠C=∠APD.
在△ACD與APD中,
∵
,
∴△ACD≌APD(AAS).
∴AP=AC=4,CD=PD.
在Rt△ABC中,∠C=90°,AC=4,BC=3,
∴AB=5.
設DP為x,則DP=x,BD=3﹣x,在Rt△DPB中,∠DPB=90°,
∴DP2+PB2=DB2,即,x2+12=(3﹣x)2,
解得x=
,
∴CD=DP=
.
【解析】(1)過點D作AB的垂線,垂足為P即可;(2)根據角平分線的性質可知∠CAD=∠BAD,利用AAS定理可知△ACD≌APD.在在Rt△ABC中根據勾股定理得出AB的長,設DP為x,則DP=x,BD=3﹣x,在Rt△DPB中,利用勾股定理即可得出結論.
【考點精析】解答此題的關鍵在于理解勾股定理的概念的相關知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
科目:初中數學 來源: 題型:
【題目】如圖,半徑為1個單位的圓片上有一點Q與數軸上的原點重合(提示:圓的周長C=2πr,本題中π的取值為3.14)![]()
(1)把圓片沿數軸向右滾動1周,點Q到達數軸上點A的位置,點A表示的數是;
(2)圓片在數軸上向右滾動的周數記為正數,圓片在數軸上向左滾動的周數記為負數,依次運動情況記錄如下:+2,﹣1,﹣5,+4,+3,﹣2
①第幾次滾動后,Q點距離原點最近?第幾次滾動后,Q點距離原點最遠?
②當圓片結束運動時,Q點運動的路程共有多少?此時點Q所表示的數是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有這樣一個問題:探究函數y=
的圖象與性質。小慧根據學習函數的經驗,對函數y=
的圖象與性質進行了探究。下面是小慧的探究過程,請補充完成:
(1)函數y=
的自變量x的取值范圍是__________;
(2)列出y與x的幾組對應值。請直接寫出m的值,m=________;
x | … | -3 | -2 | 0 | 1 | 1.5 | 2.5 | m | 4 | 6 | 7 | … |
y | … | 2.4 | 2.5 | 3 | 4 | 6 | -2 | 0 | 1 | 1.5 | 1.6 | … |
(3)請在平面直角坐標系xOy中,描出以上表中各對對應值為坐標的點,并畫出該函數的圖象;
(4)結合函數的圖象,寫出該函數的兩條性質:
![]()
①_____________________________________________;
②____________________________________________。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某玩具店購進一種兒童玩具,計劃每個售價36元,能盈利80%,在銷售中出現了滯銷,于是先后兩次降價,售價降為25元.
(1)求這種玩具的進價;
(2)求平均每次降價的百分率(精確到0.1%).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在□ABCD中,AE⊥BC于E,E恰為BC的中點,tanB=2。
![]()
![]()
![]()
(1)求證:AD=AE;
(2)如圖2,點P在BE上,作EF⊥DP于點F,連結AF,求證:DF-EF=
AF;
(3)請你在圖3中畫圖探究:當P為射線EC上任意一點(P不與點E重合)時,作EF⊥DP于點F,連結AF,線段DF、EF與AF之間有怎樣的數量關系?直接寫出你的結論為____________。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com