【題目】現有正方形ABCD和一個以O為直角頂點的三角板,移動三角板,使三角板兩直角邊所在直線分別與直線BC、CD交于點M、N.![]()
(1)如圖1,若點O與點A重合,則OM與ON的數量關系是
(2)如圖2,若點O在正方形的中心(即兩對角線交點),則(1)中的結論是否仍然成立?請說明理由;
(3)如圖3,若點O在正方形的內部(含邊界),當OM=ON時,請探究點O在移動過程中可形成什么圖形?
(4)如圖4,是點O在正方形外部的一種情況.當OM=ON時,請你就“點O的位置在各種情況下(含外部)移動所形成的圖形”提出一個正確的結論.(不必說明)
【答案】
(1)OM=ON
(2)
解:仍成立.
證明:如圖2,
![]()
連接AC、BD,則
由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°
∵∠MON=90°
∴∠BOM=∠CON
在△BOM和△CON中
![]()
∴△BOM≌△CON(ASA)
∴OM=ON.
(3)
解:如圖3,
![]()
過點O作OE⊥BC,作OF⊥CD,垂足分別為E、F,則∠OEM=∠OFN=90°
又∵∠C=90°
∴∠EOF=90°=∠MON
∴∠MOE=∠NOF
在△MOE和△NOF中
![]()
∴△MOE≌△NOF(AAS)
∴OE=OF
又∵OE⊥BC,OF⊥CD
∴點O在∠C的平分線上
∴O在移動過程中可形成線段AC.
(4)
解:O在移動過程中可形成直線AC.
![]()
【解析】(1)解:若點O與點A重合,則OM與ON的數量關系是:OM=ON;![]()
(1)根據△OBM與△ODN全等,可以得出OM與ON相等的數量關系;
(2)連接AC、BD,則通過判定△BOM≌△CON,可以得到OM=ON;
(3)過點O作OE⊥BC,作OF⊥CD,可以通過判定△MOE≌△NOF,得出OE=OF,進而發現點O在∠C的平分線上;
(4)可以運用(3)中作輔助線的方法,判定三角形全等并得出結論.本題主要考查了四邊形中的正方形,解決問題的關鍵是作輔助線構造全等三角形.解題時需要運用全等三角形的判定與性質,以及角平分線的判定定理.
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線
的極坐標方程為
,以極點為原點,極軸為
軸的正半軸,建立平面直角坐標系,直線
的參數方程為
(
為參數).
(1)判斷直線
與曲線
的位置關系,并說明理由;
(2)若直線
和曲線
相交于
兩點,且
,求直線
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD為正方形,PD⊥平面ABCD且PD=AD,則下列命題中錯誤的是( )![]()
A.過BD且與PC平行的平面交PA于M點,則M為PA的中點
B.過AC且與PB垂直的平面交PB于N點,則N為PB的中點
C.過AD且與PC垂直的平面交PC于H點,則H為PC的中點
D.過P、B、C的平面與平面PAD的交線為直線l,則l∥AD
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動點(不含端點B、C).若線段AD長為正整數,則點D的個數共有( )![]()
A.5個
B.4個
C.3個
D.2個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在多面體
中,底面
是邊長為
的正方形,四邊形
是矩形,平面
平面
,
,
和
分別是
和
的中點.
(Ⅰ)求證:
平面
.
(Ⅱ)求證:平面
平面
.
(Ⅲ)求多面體
的體積.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線
的焦點是橢圓
:
(
)的頂點,且橢圓與雙曲線的離心率互為倒數.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設動點
,
在橢圓
上,且
,記直線
在
軸上的截距為
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業為了解下屬某部門對本企業職工的服務情況,隨機訪問50名職工,根據這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區間為![]()
![]()
(1)求頻率分布直方圖中
的值;
(2)估計該企業的職工對該部門評分不低于80的概率;
(3)從評分在
的受訪職工中,隨機抽取2人,求此2人評分都在
的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com