【題目】在正方體ABCD-A1B1C1D1中,E、F、G分別為AA1、BC、C1D1的中點,現有下面三個結論:①△EFG為正三角形;②異面直線A1G與C1F所成角為60°;③AC∥平面EFG.其中所有正確結論的編號是( )
A.①B.②③C.①②D.①③
科目:高中數學 來源: 題型:
【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數學教師為了調查高三學生數學成績與線上學習時間之間的相關關系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數學時間不少于5小時的有19人,余下的人中,在檢測考試中數學平均成績不足120分的占
,統計成績后得到如下
列聯表:
分數不少于120分 | 分數不足120分 | 合計 | |
線上學習時間不少于5小時 | 4 | 19 | |
線上學習時間不足5小時 | |||
合計 | 45 |
(1)請完成上面
列聯表;并判斷是否有99%的把握認為“高三學生的數學成績與學生線上學習時間有關”;
(2)①按照分層抽樣的方法,在上述樣本中從分數不少于120分和分數不足120分的兩組學生中抽取9名學生,設抽到不足120分且每周線上學習時間不足5小時的人數是
,求
的分布列(概率用組合數算式表示);
②若將頻率視為概率,從全校高三該次檢測數學成績不少于120分的學生中隨機抽取20人,求這些人中每周線上學習時間不少于5小時的人數的期望和方差.
(下面的臨界值表供參考)
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式
其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在現代社會中,信號處理是非常關鍵的技術,我們通過每天都在使用的電話或者互聯網就能感受到,而信號處理背后的“功臣”就是正弦型函數.函數
的圖象就可以近似的模擬某種信號的波形,則下列說法正確的是( )
A.函數
為周期函數,且最小正周期為![]()
B.函數
為奇函數
C.函數
的圖象關于直線
對稱
D.函數
的導函數
的最大值為![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】極坐標系與直角坐標系
有相同的長度單位,以原點為極點,以
軸正半軸為極軸,曲線
的極坐標方程為
,曲線
的參數方程為
(
為參數,
),射線
,
,
與曲線
交于(不包括極點
)三點
,
,
.
(1)求證:
;
(2)當
時,
,
兩點在曲線
上,求
與
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,五邊形
中,四邊形
為長方形,
為邊長為
的正三角形,將
沿
折起,使得點
在平面
上的射影恰好在
上.
![]()
(Ⅰ)當
時,證明:平面
平面
;
(Ⅱ)若
,求平面
與平面
所成二面角的余弦值的絕對值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】今年3月10日湖北武漢某方艙醫院“關門大吉”,某省馳援湖北“抗疫”的9名身高各不相同的醫護人員站成一排合影留念,慶祝圓滿完成“抗疫”任務,若恰好從中間往兩邊看都依次變低,則身高排第4的醫護人員和最高的醫護人員相鄰的概率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以直角坐標系的原點
為極點,
軸的正半軸為極軸,兩個坐標系取相等的長度單位.已知圓
的參數方程為
(
為參數),直線
的直角坐標方程為
.
(1)求圓
的普通方程和直線
的極坐標方程;
(2)設圓
和直線
交于
兩點,求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某社區消費者協會為了解本社區居民網購消費情況,隨機抽取了100位居民作為樣本,就最近一年來網購消費金額(單位:千元),網購次數和支付方式等進行了問卷調査.經統計這100位居民的網購消費金額均在區間
內,按
,
,
,
,
,
分成6組,其頻率分布直方圖如圖所示.
![]()
(1)估計該社區居民最近一年來網購消費金額的中位數;
(2)將網購消費金額在20千元以上者稱為“網購迷”,補全下面的
列聯表,并判斷有多大把握認為“網購迷與性別有關系”;
男 | 女 | 合計 | |
網購迷 | 20 | ||
非網購迷 | 45 | ||
合計 | 100 |
(3)調査顯示,甲、乙兩人每次網購采用的支付方式相互獨立,兩人網購時間與次數也互不. 影響.統計最近一年來兩人網購的總次數與支付方式,所得數據如下表所示:
網購總次數 | 支付寶支付次數 | 銀行卡支付次數 | 微信支付次數 | |
80 | 40 | 16 | 24 | |
乙 | 90 | 60 | 18 | 12 |
將頻率視為概率,若甲、乙兩人在下周內各自網購2次,記兩人采用支付寶支付的次數之和為
,求
的數學期望.
附:觀測值公式:![]()
臨界值表:
| 0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com