【題目】一次考試中,5名同學的數學、物理成績如表所示:
學生 |
|
|
|
|
|
數學 | 89 | 91 | 93 | 95 | 97 |
物理 | 87 | 89 | 89 | 92 | 93 |
請在圖中的直角坐標系中作出這些數據的散點圖,并求出這些數據的回歸方程;
要從4名數學成績在90分以上的同學中選2名參加一項活動,以X表示選中的同學的物理成績高于90分的人數,求隨機變量X的分布列及數學期望
.
參考公式:線性回歸方程
;,其中
,
.
![]()
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=aln x+
(a∈R).
(1)當a=1時,求f(x)在x∈[1,+∞)內的最小值;
(2)若f(x)存在單調遞減區間,求a的取值范圍;
(3)求證ln(n+1)>
(n∈N*).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設圓
的圓心在
軸的正半軸上,與
軸相交于點
,且直線
被圓
截得的弦長為
.
(1)求圓
的標準方程;
(2)設直線
與圓
交于
兩點,那么以
為直徑的圓能否經過原點,若能,請求出直線
的方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC中,B(-1,0),C(1,0),AB=6,點P在AB上,且∠BAC=∠PCA.
(1)求點P的軌跡E的方程;
(2)若
,過點C的直線與E交于M,N兩點,與直線x=9交于點K,記QM,QN,QK的斜率分別為k1,k2,k3,試探究k1,k2,k3的關系,并證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABCA1B1C1中,∠ABC=
,D是棱AC的中點,且AB=BC=BB1=2.
![]()
(1)求證:AB1∥平面BC1D;
(2)求異面直線AB1與BC1的夾角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知圓
,點
是圓
內一個定點,
是圓
上任意-一點,線段
的垂直平分線
和半徑
相交于點
,連接
,記動點
的軌跡為曲線
.
![]()
(1)求曲線
的方程;
(2)若
、
是曲線
上關于原點對稱的兩個點,點
是曲線
.上任意-一點(不同于點
、
),當直線
、
的斜率都存在時,記它們的斜率分別為
、
,求證:
的為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,隨著互聯網技術的快速發展,共享經濟覆蓋的范圍迅速擴張,繼共享單車、共享汽車之后,共享房屋以“民宿”、“農家樂”等形式開始在很多平臺上線.某創業者計劃在某景區附近租賃一套農房發展成特色“農家樂”,為了確定未來發展方向,此創業者對該景區附近六家“農家樂”跟蹤調查了
天.得到的統計數據如下表,
為收費標準(單位:元/日),
為入住天數(單位:),以頻率作為各自的“入住率”,收費標準
與“入住率”
的散點圖如圖
x | 50 | 100 | 150 | 200 | 300 | 400 |
t | 90 | 65 | 45 | 30 | 20 | 20 |
![]()
(1)若從以上六家“農家樂”中隨機抽取兩家深入調查,記
為“入住率”超過
的農家樂的個數,求
的概率分布列;
(2)令
,由散點圖判斷
與
哪個更合適于此模型(給出判斷即可,不必說明理由)?并根據你的判斷結果求回歸方程.(
結果保留一位小數)
(3)若一年按
天計算,試估計收費標準為多少時,年銷售額
最大?(年銷售額
入住率
收費標準
)
參考數據:
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點P到直線y=﹣4的距離比點P到點A(0,1)的距離多3.
(1)求點P的軌跡方程;
(2)經過點Q(0,2)的動直線l與點P的軌交于M,N兩點,是否存在定點R使得∠MRQ=∠NRQ?若存在,求出點R的坐標:若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三棱錐
中,BO、AO、CO所在直線兩兩垂直,且AO=CO,∠BAO=60°,E是AC的中點,三棱錐
的體積為![]()
![]()
(1)求三棱錐
的高;
(2)在線段AB上取一點D,當D在什么位置時,
和
的夾角大小為 ![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com